{"title":"EHMT1N 的细胞质形式会使病毒蛋白甲基化,从而使包涵体成熟并高效复制病毒。","authors":"Kriti Kestur Biligiri, Nishi Raj Sharma, Abhishek Mohanty, Debi Prasad Sarkar, Praveen Kumar Vemula, Shravanti Rampalli","doi":"10.1371/journal.pbio.3002871","DOIUrl":null,"url":null,"abstract":"<p><p>Protein lysine methyltransferases (PKMTs) methylate histone and non-histone proteins to regulate biological outcomes such as development and disease including viral infection. While PKMTs have been extensively studied for modulating the antiviral responses via host gene regulation, their role in methylation of proteins encoded by viruses and its impact on host-pathogen interactions remain poorly understood. In this study, we discovered distinct nucleo-cytoplasmic form of euchromatic histone methyltransferase 1 (EHMT1N/C), a PKMT, that phase separates into viral inclusion bodies (IBs) upon cytoplasmic RNA-virus infection (Sendai Virus). EHMT1N/C interacts with cytoplasmic EHMT2 and methylates SeV-Nucleoprotein upon infection. Elevated nucleoprotein methylation during infection correlated with coalescence of small IBs into large mature platforms for efficient replication. Inhibition of EHMT activity by pharmacological inhibitors or genetic depletion of EHMT1N/C reduced the size of IBs with a concomitant reduction in replication. Additionally, we also found that EHMT1 condensation is not restricted to SeV alone but was also seen upon pathogenic RNA viral infections caused by Chandipura and Dengue virus. Collectively, our work elucidates a new mechanism by which cytoplasmic EHMT1 acts as proviral host factor to regulate host-pathogen interaction.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cytoplasmic form of EHMT1N methylates viral proteins to enable inclusion body maturation and efficient viral replication.\",\"authors\":\"Kriti Kestur Biligiri, Nishi Raj Sharma, Abhishek Mohanty, Debi Prasad Sarkar, Praveen Kumar Vemula, Shravanti Rampalli\",\"doi\":\"10.1371/journal.pbio.3002871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein lysine methyltransferases (PKMTs) methylate histone and non-histone proteins to regulate biological outcomes such as development and disease including viral infection. While PKMTs have been extensively studied for modulating the antiviral responses via host gene regulation, their role in methylation of proteins encoded by viruses and its impact on host-pathogen interactions remain poorly understood. In this study, we discovered distinct nucleo-cytoplasmic form of euchromatic histone methyltransferase 1 (EHMT1N/C), a PKMT, that phase separates into viral inclusion bodies (IBs) upon cytoplasmic RNA-virus infection (Sendai Virus). EHMT1N/C interacts with cytoplasmic EHMT2 and methylates SeV-Nucleoprotein upon infection. Elevated nucleoprotein methylation during infection correlated with coalescence of small IBs into large mature platforms for efficient replication. Inhibition of EHMT activity by pharmacological inhibitors or genetic depletion of EHMT1N/C reduced the size of IBs with a concomitant reduction in replication. Additionally, we also found that EHMT1 condensation is not restricted to SeV alone but was also seen upon pathogenic RNA viral infections caused by Chandipura and Dengue virus. Collectively, our work elucidates a new mechanism by which cytoplasmic EHMT1 acts as proviral host factor to regulate host-pathogen interaction.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002871\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002871","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
A cytoplasmic form of EHMT1N methylates viral proteins to enable inclusion body maturation and efficient viral replication.
Protein lysine methyltransferases (PKMTs) methylate histone and non-histone proteins to regulate biological outcomes such as development and disease including viral infection. While PKMTs have been extensively studied for modulating the antiviral responses via host gene regulation, their role in methylation of proteins encoded by viruses and its impact on host-pathogen interactions remain poorly understood. In this study, we discovered distinct nucleo-cytoplasmic form of euchromatic histone methyltransferase 1 (EHMT1N/C), a PKMT, that phase separates into viral inclusion bodies (IBs) upon cytoplasmic RNA-virus infection (Sendai Virus). EHMT1N/C interacts with cytoplasmic EHMT2 and methylates SeV-Nucleoprotein upon infection. Elevated nucleoprotein methylation during infection correlated with coalescence of small IBs into large mature platforms for efficient replication. Inhibition of EHMT activity by pharmacological inhibitors or genetic depletion of EHMT1N/C reduced the size of IBs with a concomitant reduction in replication. Additionally, we also found that EHMT1 condensation is not restricted to SeV alone but was also seen upon pathogenic RNA viral infections caused by Chandipura and Dengue virus. Collectively, our work elucidates a new mechanism by which cytoplasmic EHMT1 acts as proviral host factor to regulate host-pathogen interaction.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.