牛胎儿和成年牛瘤胃组织特异功能建立的表观遗传学基础

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-11-05 DOI:10.1016/j.jgg.2024.10.008
Jing Wang, Wen Yuan, Fang Liu, Guangbo Liu, Xiaoxiong Geng, Chen Li, Chenchen Zhang, Nan Li, Xueling Li
{"title":"牛胎儿和成年牛瘤胃组织特异功能建立的表观遗传学基础","authors":"Jing Wang, Wen Yuan, Fang Liu, Guangbo Liu, Xiaoxiong Geng, Chen Li, Chenchen Zhang, Nan Li, Xueling Li","doi":"10.1016/j.jgg.2024.10.008","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic regulation in the rumen, a unique ruminant organ, remains largely unexplored compared with other tissues studied in model species. In this study, we perform an in-depth analysis of the epigenetic and transcriptional landscapes across fetal and adult bovine tissues as well as pluripotent stem cells. Among the extensive methylation differences across various stages and tissues, we identify tissue-specific differentially methylated regions (tsDMRs) unique to the rumen, which are crucial for regulating epithelial development and energy metabolism. These tsDMRs cluster within super-enhancer regions that overlap with transcription factor (TF) binding sites. Regression models indicate that DNA methylation, along with H3K27me3 and H3K27ac, can be used to predict enhancer activity. Key upstream TFs, including SOX2, FOSL1/2, and SMAD2/3, primarily maintain an inhibitory state through bivalent modifications during fetal development. Downstream functional genes are maintained mainly in a stable repressive state via DNA methylation until differentiation is complete. Our study underscores the critical role of tsDMRs in regulating distal components of rumen morphology and function, providing key insights into the epigenetic regulatory mechanisms that may influence bovine production traits.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetic basis for the establishment of ruminal tissue-specific functions in bovine fetuses and adults.\",\"authors\":\"Jing Wang, Wen Yuan, Fang Liu, Guangbo Liu, Xiaoxiong Geng, Chen Li, Chenchen Zhang, Nan Li, Xueling Li\",\"doi\":\"10.1016/j.jgg.2024.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic regulation in the rumen, a unique ruminant organ, remains largely unexplored compared with other tissues studied in model species. In this study, we perform an in-depth analysis of the epigenetic and transcriptional landscapes across fetal and adult bovine tissues as well as pluripotent stem cells. Among the extensive methylation differences across various stages and tissues, we identify tissue-specific differentially methylated regions (tsDMRs) unique to the rumen, which are crucial for regulating epithelial development and energy metabolism. These tsDMRs cluster within super-enhancer regions that overlap with transcription factor (TF) binding sites. Regression models indicate that DNA methylation, along with H3K27me3 and H3K27ac, can be used to predict enhancer activity. Key upstream TFs, including SOX2, FOSL1/2, and SMAD2/3, primarily maintain an inhibitory state through bivalent modifications during fetal development. Downstream functional genes are maintained mainly in a stable repressive state via DNA methylation until differentiation is complete. Our study underscores the critical role of tsDMRs in regulating distal components of rumen morphology and function, providing key insights into the epigenetic regulatory mechanisms that may influence bovine production traits.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2024.10.008\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.10.008","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

瘤胃是一种独特的反刍动物器官,与在模式物种中研究的其他组织相比,瘤胃中的表观遗传调控在很大程度上仍未得到探索。在这项研究中,我们深入分析了牛胎儿和成年组织以及多能干细胞的表观遗传和转录景观。在不同阶段和组织间广泛的甲基化差异中,我们发现了瘤胃特有的组织特异性差异甲基化区域(tsDMRs),它们对调控上皮发育和能量代谢至关重要。这些tsDMRs聚集在与转录因子(TF)结合位点重叠的超级增强区内。回归模型表明,DNA甲基化以及 H3K27me3 和 H3K27ac 可用于预测增强子的活性。包括 SOX2、FOSL1/2 和 SMAD2/3 在内的关键上游 TF 在胎儿发育过程中主要通过二价修饰维持抑制状态。下游功能基因主要通过 DNA 甲基化保持稳定的抑制状态,直到分化完成。我们的研究强调了tsDMRs在调控瘤胃形态和功能的远端成分中的关键作用,为了解可能影响牛生产性状的表观遗传调控机制提供了重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epigenetic basis for the establishment of ruminal tissue-specific functions in bovine fetuses and adults.

Epigenetic regulation in the rumen, a unique ruminant organ, remains largely unexplored compared with other tissues studied in model species. In this study, we perform an in-depth analysis of the epigenetic and transcriptional landscapes across fetal and adult bovine tissues as well as pluripotent stem cells. Among the extensive methylation differences across various stages and tissues, we identify tissue-specific differentially methylated regions (tsDMRs) unique to the rumen, which are crucial for regulating epithelial development and energy metabolism. These tsDMRs cluster within super-enhancer regions that overlap with transcription factor (TF) binding sites. Regression models indicate that DNA methylation, along with H3K27me3 and H3K27ac, can be used to predict enhancer activity. Key upstream TFs, including SOX2, FOSL1/2, and SMAD2/3, primarily maintain an inhibitory state through bivalent modifications during fetal development. Downstream functional genes are maintained mainly in a stable repressive state via DNA methylation until differentiation is complete. Our study underscores the critical role of tsDMRs in regulating distal components of rumen morphology and function, providing key insights into the epigenetic regulatory mechanisms that may influence bovine production traits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1