Jianfei Lei*, Ying Chen, Kaijie Liu, Shenao Liu, Yang Liu, Shanteng Zhang, Jinmei Wang, Fujing Dong and Yanfei Liu,
{"title":"掺杂 N 的多孔碳上支持的铂单原子和铂簇可改善氢气进化反应","authors":"Jianfei Lei*, Ying Chen, Kaijie Liu, Shenao Liu, Yang Liu, Shanteng Zhang, Jinmei Wang, Fujing Dong and Yanfei Liu, ","doi":"10.1021/acsanm.4c0487910.1021/acsanm.4c04879","DOIUrl":null,"url":null,"abstract":"<p >Platinum is renowned for its exceptional catalytic performance in the hydrogen evolution reaction (HER), but its high cost and rarity seriously hinder the large-scale application of platinum electrocatalysts. Constructing highly dispersed platinum active sites is an effective strategy to lower the loading of Pt while maintaining high activity. Herein, a highly dispersed Pt catalyst composed of a mixture of single atoms and clusters is synthesized on porous N-doped carbon (Pt/N-PC) derived from renewable peony. The existence of Pt single atoms and clusters was confirmed by combining methods such as aberration-corrected high-angle annular dark field-scanning transmission electron microscopy images (HAADF-STEM), X-ray absorption fine structure (XAFS), and X-ray photoelectron spectroscopy (XPS). The Pt/N-PC catalyst exhibits superior performance compared to the Pt-free catalyst (N-PC) as well as to the commercial 20 wt % Pt/C catalyst. It exhibits an overpotential of just 11 mV at a current density of 10 mA/cm<sup>2</sup>, a Tafel slope of 24.1 mV/dec, and an exceptional long-term durability in acidic environments. Notably, upon optimizing the geometric loading amount of Pt, the optimal catalyst achieves an ultrahigh platinum mass activity of 3.44 A mg<sup>–1</sup><sub>Pt</sub> at a potential of −50 mV. This value is approximately 9.5 times greater than that of the commercial 20 wt % Pt/C catalyst (0.36 A mg<sup>–1</sup><sub>Pt</sub>).</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pt Single Atoms and Clusters Supported on N-Doped Porous Carbon for Improved Hydrogen Evolution Reaction\",\"authors\":\"Jianfei Lei*, Ying Chen, Kaijie Liu, Shenao Liu, Yang Liu, Shanteng Zhang, Jinmei Wang, Fujing Dong and Yanfei Liu, \",\"doi\":\"10.1021/acsanm.4c0487910.1021/acsanm.4c04879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Platinum is renowned for its exceptional catalytic performance in the hydrogen evolution reaction (HER), but its high cost and rarity seriously hinder the large-scale application of platinum electrocatalysts. Constructing highly dispersed platinum active sites is an effective strategy to lower the loading of Pt while maintaining high activity. Herein, a highly dispersed Pt catalyst composed of a mixture of single atoms and clusters is synthesized on porous N-doped carbon (Pt/N-PC) derived from renewable peony. The existence of Pt single atoms and clusters was confirmed by combining methods such as aberration-corrected high-angle annular dark field-scanning transmission electron microscopy images (HAADF-STEM), X-ray absorption fine structure (XAFS), and X-ray photoelectron spectroscopy (XPS). The Pt/N-PC catalyst exhibits superior performance compared to the Pt-free catalyst (N-PC) as well as to the commercial 20 wt % Pt/C catalyst. It exhibits an overpotential of just 11 mV at a current density of 10 mA/cm<sup>2</sup>, a Tafel slope of 24.1 mV/dec, and an exceptional long-term durability in acidic environments. Notably, upon optimizing the geometric loading amount of Pt, the optimal catalyst achieves an ultrahigh platinum mass activity of 3.44 A mg<sup>–1</sup><sub>Pt</sub> at a potential of −50 mV. This value is approximately 9.5 times greater than that of the commercial 20 wt % Pt/C catalyst (0.36 A mg<sup>–1</sup><sub>Pt</sub>).</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c04879\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04879","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Pt Single Atoms and Clusters Supported on N-Doped Porous Carbon for Improved Hydrogen Evolution Reaction
Platinum is renowned for its exceptional catalytic performance in the hydrogen evolution reaction (HER), but its high cost and rarity seriously hinder the large-scale application of platinum electrocatalysts. Constructing highly dispersed platinum active sites is an effective strategy to lower the loading of Pt while maintaining high activity. Herein, a highly dispersed Pt catalyst composed of a mixture of single atoms and clusters is synthesized on porous N-doped carbon (Pt/N-PC) derived from renewable peony. The existence of Pt single atoms and clusters was confirmed by combining methods such as aberration-corrected high-angle annular dark field-scanning transmission electron microscopy images (HAADF-STEM), X-ray absorption fine structure (XAFS), and X-ray photoelectron spectroscopy (XPS). The Pt/N-PC catalyst exhibits superior performance compared to the Pt-free catalyst (N-PC) as well as to the commercial 20 wt % Pt/C catalyst. It exhibits an overpotential of just 11 mV at a current density of 10 mA/cm2, a Tafel slope of 24.1 mV/dec, and an exceptional long-term durability in acidic environments. Notably, upon optimizing the geometric loading amount of Pt, the optimal catalyst achieves an ultrahigh platinum mass activity of 3.44 A mg–1Pt at a potential of −50 mV. This value is approximately 9.5 times greater than that of the commercial 20 wt % Pt/C catalyst (0.36 A mg–1Pt).
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.