氢氧根对全氟辛烷磺酸的大气氧化作用:密度泛函理论研究

Michael R. Dooley, Steven P. Nixon, Benjamin E. Payton, Mikayla A. Hudak, Fiona Odei and Shubham Vyas*, 
{"title":"氢氧根对全氟辛烷磺酸的大气氧化作用:密度泛函理论研究","authors":"Michael R. Dooley,&nbsp;Steven P. Nixon,&nbsp;Benjamin E. Payton,&nbsp;Mikayla A. Hudak,&nbsp;Fiona Odei and Shubham Vyas*,&nbsp;","doi":"10.1021/acsestair.4c0007010.1021/acsestair.4c00070","DOIUrl":null,"url":null,"abstract":"<p >Per- and polyfluoroalkyl substances (PFAS) are persistent, widely spread, and harmful pollutants. They can travel through the air, be transformed by radicals, and deposit into water or onto surfaces. They enter the atmosphere via direct emission, degradation of precursors, or aerosol formation. A recent investigation found novel compounds in rainwater, meaning PFAS may undergo transformations in the atmosphere. These transformations might exhibit distinct behavior compared to more well-researched reactions, creating difficulties in the identification of any new compounds being produced. Using density functional theory (DFT), we simulated reactions of PFAS with a major atmospheric radical, the hydroxyl radical, revealing activation energies and other thermodynamic insights. The activation energies aid in predicting likely reactions and understanding speciation. Identifying new species can guide future analyses and remediation efforts. We focused on the nine most widely studied families of PFAS, finding that radical abstraction along the alkyl chain is favored over functional groups regardless of chain length. These results establish a new foundation for understanding PFAS transformations in the atmosphere, especially when decarboxylation is not followed.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"1 11","pages":"1352–1361 1352–1361"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atmospheric Oxidation of PFAS by Hydroxyl Radical: A Density Functional Theory Study\",\"authors\":\"Michael R. Dooley,&nbsp;Steven P. Nixon,&nbsp;Benjamin E. Payton,&nbsp;Mikayla A. Hudak,&nbsp;Fiona Odei and Shubham Vyas*,&nbsp;\",\"doi\":\"10.1021/acsestair.4c0007010.1021/acsestair.4c00070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Per- and polyfluoroalkyl substances (PFAS) are persistent, widely spread, and harmful pollutants. They can travel through the air, be transformed by radicals, and deposit into water or onto surfaces. They enter the atmosphere via direct emission, degradation of precursors, or aerosol formation. A recent investigation found novel compounds in rainwater, meaning PFAS may undergo transformations in the atmosphere. These transformations might exhibit distinct behavior compared to more well-researched reactions, creating difficulties in the identification of any new compounds being produced. Using density functional theory (DFT), we simulated reactions of PFAS with a major atmospheric radical, the hydroxyl radical, revealing activation energies and other thermodynamic insights. The activation energies aid in predicting likely reactions and understanding speciation. Identifying new species can guide future analyses and remediation efforts. We focused on the nine most widely studied families of PFAS, finding that radical abstraction along the alkyl chain is favored over functional groups regardless of chain length. These results establish a new foundation for understanding PFAS transformations in the atmosphere, especially when decarboxylation is not followed.</p>\",\"PeriodicalId\":100014,\"journal\":{\"name\":\"ACS ES&T Air\",\"volume\":\"1 11\",\"pages\":\"1352–1361 1352–1361\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestair.4c00070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全氟烷基和多氟烷基物质 (PFAS) 是一种持久性、广泛传播的有害污染物。它们可以在空气中传播,被自由基转化,并沉积到水中或物体表面。它们通过直接排放、前体降解或气溶胶形成进入大气。最近的一项调查在雨水中发现了新型化合物,这意味着全氟辛烷磺酸可能会在大气中发生转化。与研究更深入的反应相比,这些转化可能会表现出不同的行为,从而给识别正在产生的任何新化合物造成困难。利用密度泛函理论(DFT),我们模拟了 PFAS 与大气中主要自由基(羟基自由基)的反应,揭示了活化能和其他热力学现象。活化能有助于预测可能发生的反应和了解物种。确定新的物种可以指导未来的分析和修复工作。我们重点研究了九种研究最为广泛的全氟辛烷磺酸(PFAS)家族,发现无论链的长度如何,沿烷基链的自由基抽取均优于官能团。这些结果为了解大气中的全氟辛烷磺酸转化(尤其是在没有脱羧反应的情况下)奠定了新的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atmospheric Oxidation of PFAS by Hydroxyl Radical: A Density Functional Theory Study

Per- and polyfluoroalkyl substances (PFAS) are persistent, widely spread, and harmful pollutants. They can travel through the air, be transformed by radicals, and deposit into water or onto surfaces. They enter the atmosphere via direct emission, degradation of precursors, or aerosol formation. A recent investigation found novel compounds in rainwater, meaning PFAS may undergo transformations in the atmosphere. These transformations might exhibit distinct behavior compared to more well-researched reactions, creating difficulties in the identification of any new compounds being produced. Using density functional theory (DFT), we simulated reactions of PFAS with a major atmospheric radical, the hydroxyl radical, revealing activation energies and other thermodynamic insights. The activation energies aid in predicting likely reactions and understanding speciation. Identifying new species can guide future analyses and remediation efforts. We focused on the nine most widely studied families of PFAS, finding that radical abstraction along the alkyl chain is favored over functional groups regardless of chain length. These results establish a new foundation for understanding PFAS transformations in the atmosphere, especially when decarboxylation is not followed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Atmospheric Radical Chemistry Evolution: A Chemical Scan of the Atmosphere Wildfire Seasons, Prenatal PM2.5 Exposure, and Respiratory Infections by Age 1 Year: A Population-Based Case-Control Analysis of Critical Developmental Windows Chemical Characterization of Organic Aerosol Tracers Derived from Burning Biomass Indigenous to Sub-Saharan Africa: Fresh Emissions versus Photochemical Aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1