二烷基稀土配合物在环境条件下介导 NH3 形成类辐射 NH 配体

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-01 DOI:10.1021/jacs.4c0875210.1021/jacs.4c08752
Changjiang Wu, Yingzhuang Xu, Songyi Li, Yinshan Meng, Huayi Fang* and Chunhua Yan, 
{"title":"二烷基稀土配合物在环境条件下介导 NH3 形成类辐射 NH 配体","authors":"Changjiang Wu,&nbsp;Yingzhuang Xu,&nbsp;Songyi Li,&nbsp;Yinshan Meng,&nbsp;Huayi Fang* and Chunhua Yan,&nbsp;","doi":"10.1021/jacs.4c0875210.1021/jacs.4c08752","DOIUrl":null,"url":null,"abstract":"<p >Although intensive work on ammonia activation has been carried out in recent decades, generating nitrogen-centered radicals from NH<sub>3</sub> under ambient conditions remains quite challenging. In the presented research, the conversion of NH<sub>3</sub> to radical-like NH ligand has been achieved by the reactions of a series of dialkyl rare-earth (RE) complexes (<b>1-RE</b>, RE = Tb, Dy, Y, Ho, Er, Yb, and Lu) supported by β-diketiminate ligands with NH<sub>3</sub> in <i>n</i>-hexane at room temperature, resulting in the formations of the radical-like μ<sub>3</sub>-NH ligands containing trinuclear RE complexes (<b>2-RE</b>). The radical-like feature of the μ<sub>3</sub>-NH ligand was revealed by electron paramagnetic resonance and magnetic measurements, radical trapping experiments, and computational spin density analysis. In addition, H<sub>2</sub> was detected to form during the reaction of <b>1-RE</b> with NH<sub>3</sub>, indicating that the radical-like μ<sub>3</sub>-NH ligand was likely to be generated via N–H bond homolysis. Moreover, the solvents and coordination pattern of β-diketiminate ligands are crucial for the formation of the radical-like μ<sub>3</sub>-NH ligand from NH<sub>3</sub>. When toluene instead of <i>n</i>-hexane was used in the reaction of <b>1-RE</b> with NH<sub>3</sub>, an array of octaamido tetranuclear RE complexes (<b>3-RE</b>) was obtained. The reaction of the dialkyl yttrium complex (<b>4-Y</b>) bearing a modified β-diketiminate ligand, in which the two mesityl substituents are replaced by a 2,6-diisopropylphenyl group and a 2-(dimethylamino)ethyl group, with NH<sub>3</sub> in both <i>n</i>-hexane and toluene only yielded a tetranuclear yttrium complex carrying the dianionic closed-shell μ<sub>3</sub>-NH ligands (<b>5-Y</b>).</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"30824–30835 30824–30835"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of Radical-like NH Ligand from NH3 at Ambient Conditions Mediated by Dialkyl Rare-Earth Complexes\",\"authors\":\"Changjiang Wu,&nbsp;Yingzhuang Xu,&nbsp;Songyi Li,&nbsp;Yinshan Meng,&nbsp;Huayi Fang* and Chunhua Yan,&nbsp;\",\"doi\":\"10.1021/jacs.4c0875210.1021/jacs.4c08752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Although intensive work on ammonia activation has been carried out in recent decades, generating nitrogen-centered radicals from NH<sub>3</sub> under ambient conditions remains quite challenging. In the presented research, the conversion of NH<sub>3</sub> to radical-like NH ligand has been achieved by the reactions of a series of dialkyl rare-earth (RE) complexes (<b>1-RE</b>, RE = Tb, Dy, Y, Ho, Er, Yb, and Lu) supported by β-diketiminate ligands with NH<sub>3</sub> in <i>n</i>-hexane at room temperature, resulting in the formations of the radical-like μ<sub>3</sub>-NH ligands containing trinuclear RE complexes (<b>2-RE</b>). The radical-like feature of the μ<sub>3</sub>-NH ligand was revealed by electron paramagnetic resonance and magnetic measurements, radical trapping experiments, and computational spin density analysis. In addition, H<sub>2</sub> was detected to form during the reaction of <b>1-RE</b> with NH<sub>3</sub>, indicating that the radical-like μ<sub>3</sub>-NH ligand was likely to be generated via N–H bond homolysis. Moreover, the solvents and coordination pattern of β-diketiminate ligands are crucial for the formation of the radical-like μ<sub>3</sub>-NH ligand from NH<sub>3</sub>. When toluene instead of <i>n</i>-hexane was used in the reaction of <b>1-RE</b> with NH<sub>3</sub>, an array of octaamido tetranuclear RE complexes (<b>3-RE</b>) was obtained. The reaction of the dialkyl yttrium complex (<b>4-Y</b>) bearing a modified β-diketiminate ligand, in which the two mesityl substituents are replaced by a 2,6-diisopropylphenyl group and a 2-(dimethylamino)ethyl group, with NH<sub>3</sub> in both <i>n</i>-hexane and toluene only yielded a tetranuclear yttrium complex carrying the dianionic closed-shell μ<sub>3</sub>-NH ligands (<b>5-Y</b>).</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 45\",\"pages\":\"30824–30835 30824–30835\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c08752\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c08752","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管近几十年来人们在氨活化方面开展了大量工作,但在环境条件下从 NH3 生成以氮为中心的自由基仍然具有相当大的挑战性。在本研究中,一系列二烷基稀土(RE)配合物(1-RE,RE = Tb、Dy、Y、Ho、Er、Yb 和 Lu)在正己烷中于室温下与β-二甲酰配体支持的 NH3 反应,实现了 NH3 向类自由基 NH 配体的转化,形成了含有三核 RE 配合物(2-RE)的类自由基 μ3-NH 配体。电子顺磁共振和磁性测量、自由基捕获实验以及计算自旋密度分析揭示了 μ3-NH 配体的自由基特征。此外,在 1-RE 与 NH3 反应的过程中检测到 H2 生成,这表明类自由基的 μ3-NH 配体很可能是通过 N-H 键均解生成的。此外,β-二亚基配体的溶剂和配位模式对 NH3 形成类自由基 μ3-NH 配体至关重要。在 1-RE 与 NH3 的反应中使用甲苯而不是正己烷时,得到了一系列八氨基四核 RE 复合物(3-RE)。在正己烷和甲苯中,带有改良的 β-二乙二胺配体的二烷基钇络合物(4-Y)与 NH3 反应,只得到了带有双离子闭壳 μ3-NH 配体的四核钇络合物(5-Y)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation of Radical-like NH Ligand from NH3 at Ambient Conditions Mediated by Dialkyl Rare-Earth Complexes

Although intensive work on ammonia activation has been carried out in recent decades, generating nitrogen-centered radicals from NH3 under ambient conditions remains quite challenging. In the presented research, the conversion of NH3 to radical-like NH ligand has been achieved by the reactions of a series of dialkyl rare-earth (RE) complexes (1-RE, RE = Tb, Dy, Y, Ho, Er, Yb, and Lu) supported by β-diketiminate ligands with NH3 in n-hexane at room temperature, resulting in the formations of the radical-like μ3-NH ligands containing trinuclear RE complexes (2-RE). The radical-like feature of the μ3-NH ligand was revealed by electron paramagnetic resonance and magnetic measurements, radical trapping experiments, and computational spin density analysis. In addition, H2 was detected to form during the reaction of 1-RE with NH3, indicating that the radical-like μ3-NH ligand was likely to be generated via N–H bond homolysis. Moreover, the solvents and coordination pattern of β-diketiminate ligands are crucial for the formation of the radical-like μ3-NH ligand from NH3. When toluene instead of n-hexane was used in the reaction of 1-RE with NH3, an array of octaamido tetranuclear RE complexes (3-RE) was obtained. The reaction of the dialkyl yttrium complex (4-Y) bearing a modified β-diketiminate ligand, in which the two mesityl substituents are replaced by a 2,6-diisopropylphenyl group and a 2-(dimethylamino)ethyl group, with NH3 in both n-hexane and toluene only yielded a tetranuclear yttrium complex carrying the dianionic closed-shell μ3-NH ligands (5-Y).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Oxygen Vacancy Boosts Nitrogen-Centered Radical Coupling Initiated by Primary Amine Electrooxidation Synthesis of Multisubstituted Cyclopentadiene Derivatives from 3,3-Disubstituted Cyclopropenes and Internal Alkynes Catalyzed by Low-Valent Niobium Complexes Molecular Design of Phthalocyanine-Based Drug Coassembly with Tailored Function Generative Pretrained Transformer for Heterogeneous Catalysts Plateau–Rayleigh Instability in Soft-Lattice Inorganic Solids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1