Jianqin Tang, Chenyang Hu, Agamemnon E. Crumpton, Maximilian Dietz, Debotra Sarkar, Liam P. Griffin, Jose M. Goicoechea* and Simon Aldridge*,
{"title":"无机积雪烯的合成、几何结构和电子结构","authors":"Jianqin Tang, Chenyang Hu, Agamemnon E. Crumpton, Maximilian Dietz, Debotra Sarkar, Liam P. Griffin, Jose M. Goicoechea* and Simon Aldridge*, ","doi":"10.1021/jacs.4c1323110.1021/jacs.4c13231","DOIUrl":null,"url":null,"abstract":"<p >Molecular chains of two-coordinate carbon atoms (cumulenes) have long been targeted, due to interest in the electronic structure and applications of extended π-systems, and their relationship to the carbon allotrope, carbyne. While formal (isoelectronic) B═N for C═C substitution has been employed in two-dimensional (2-D) materials, unsaturated one-dimensional all-inorganic “molecular wires” are unknown. Here, we report high-yielding synthetic approaches to heterocumulenes containing a five-atom BNBNB chain, the geometric structure of which can be modified by choice of end group. The diamido-capped system is bent at the 2-/4-positions, and natural resonance theory calculations reveal significant contributions from B═N(:)–B≡N–B resonance forms featuring a lone pair at N (consistent with observed N-centered nucleophilicity). Molecular modification to generate a linear system best described by a B═N═B═N═B resonance structure involves chemical transformation of the capping groups (using B(C<sub>5</sub>F<sub>5</sub>)<sub>3</sub>) to enhance their π-acidity and conjugate the N-lone pairs.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"30778–30783 30778–30783"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c13231","citationCount":"0","resultStr":"{\"title\":\"Syntheses, Geometric and Electronic Structures of Inorganic Cumulenes\",\"authors\":\"Jianqin Tang, Chenyang Hu, Agamemnon E. Crumpton, Maximilian Dietz, Debotra Sarkar, Liam P. Griffin, Jose M. Goicoechea* and Simon Aldridge*, \",\"doi\":\"10.1021/jacs.4c1323110.1021/jacs.4c13231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molecular chains of two-coordinate carbon atoms (cumulenes) have long been targeted, due to interest in the electronic structure and applications of extended π-systems, and their relationship to the carbon allotrope, carbyne. While formal (isoelectronic) B═N for C═C substitution has been employed in two-dimensional (2-D) materials, unsaturated one-dimensional all-inorganic “molecular wires” are unknown. Here, we report high-yielding synthetic approaches to heterocumulenes containing a five-atom BNBNB chain, the geometric structure of which can be modified by choice of end group. The diamido-capped system is bent at the 2-/4-positions, and natural resonance theory calculations reveal significant contributions from B═N(:)–B≡N–B resonance forms featuring a lone pair at N (consistent with observed N-centered nucleophilicity). Molecular modification to generate a linear system best described by a B═N═B═N═B resonance structure involves chemical transformation of the capping groups (using B(C<sub>5</sub>F<sub>5</sub>)<sub>3</sub>) to enhance their π-acidity and conjugate the N-lone pairs.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 45\",\"pages\":\"30778–30783 30778–30783\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c13231\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c13231\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c13231","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
由于人们对扩展 π 系统的电子结构和应用以及它们与碳同素异形体碳烯的关系感兴趣,双配位碳原子分子链(积碳)长期以来一直是研究的目标。虽然二维(2-D)材料已经采用了形式(等电子)B═N 对 C═C 的取代,但不饱和的一维全无机 "分子线 "还不为人知。在此,我们报告了含有五原子 BNBNB 链的杂茂烯烃的高产合成方法,该链的几何结构可通过选择末端基团而改变。二氨基封端体系在 2-/4 位弯曲,自然共振理论计算显示,B═N(:)-B≡N-B 共振形式具有显著的贡献,其特点是 N 位有一个孤对(与观察到的 N 中心亲核性一致)。要生成一个由 B═N═B═N═B 共振结构描述的线性系统,需要对封端基团(使用 B(C5F5)3)进行化学转化,以增强其 π-酸度并轭合 N 孤对。
Syntheses, Geometric and Electronic Structures of Inorganic Cumulenes
Molecular chains of two-coordinate carbon atoms (cumulenes) have long been targeted, due to interest in the electronic structure and applications of extended π-systems, and their relationship to the carbon allotrope, carbyne. While formal (isoelectronic) B═N for C═C substitution has been employed in two-dimensional (2-D) materials, unsaturated one-dimensional all-inorganic “molecular wires” are unknown. Here, we report high-yielding synthetic approaches to heterocumulenes containing a five-atom BNBNB chain, the geometric structure of which can be modified by choice of end group. The diamido-capped system is bent at the 2-/4-positions, and natural resonance theory calculations reveal significant contributions from B═N(:)–B≡N–B resonance forms featuring a lone pair at N (consistent with observed N-centered nucleophilicity). Molecular modification to generate a linear system best described by a B═N═B═N═B resonance structure involves chemical transformation of the capping groups (using B(C5F5)3) to enhance their π-acidity and conjugate the N-lone pairs.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.