用于高效整体碱性水分离的柳树荑状 Co4S3-WS2 纳米结构电催化剂

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-10-17 DOI:10.1021/acsanm.4c0400410.1021/acsanm.4c04004
Jiani Wang, Qian Ling, Yuxiang Yao, Denglin Zhu, Sizhan Shu, Zile Zhou, Xuefei Wu* and Pingfan Wu*, 
{"title":"用于高效整体碱性水分离的柳树荑状 Co4S3-WS2 纳米结构电催化剂","authors":"Jiani Wang,&nbsp;Qian Ling,&nbsp;Yuxiang Yao,&nbsp;Denglin Zhu,&nbsp;Sizhan Shu,&nbsp;Zile Zhou,&nbsp;Xuefei Wu* and Pingfan Wu*,&nbsp;","doi":"10.1021/acsanm.4c0400410.1021/acsanm.4c04004","DOIUrl":null,"url":null,"abstract":"<p >Exploring catalysts with high catalytic activity, abundant reserves, and low cost is of great significance for the hydrogen evolution reaction (HER). Polyoxometalates (POMs) have attracted extensive attention in recent years due to their rich structure and unique electrocatalytic properties. In this study, a nanostructured Co<sub>4</sub>S<sub>3</sub>–WS<sub>2</sub> electrocatalyst was synthesized through a hydrothermal reaction using thiourea and polyoxometalate (Co<sub>5</sub>W<sub>19</sub>) as precursors. The synergistic effect between the prepared bimetallic cobalt tungsten sulfide nanomaterial (Co<sub>4</sub>S<sub>3</sub>–WS<sub>2</sub>) promoted electron transfer and improved electrocatalytic performance exhibited excellent electrocatalytic activity with lower overpotentials for hydrogen evolution and oxygen evolution reactions (OER) at 10 mA cm<sup>–2</sup>, namely, 133 mV and 297 mV, respectively, with Tafel slopes of 114 mV dec<sup>–1</sup> and 55 mV dec<sup>–1</sup>. Additionally, the material demonstrated long-term stability during continuous electrocatalysis. The in situ growth of the Co<sub>4</sub>S<sub>3</sub>–WS<sub>2</sub> nanomaterial on carbon cloth via hydrothermal synthesis using the POM precursor provides guidance and inspiration for designing efficient HER electrocatalysts.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Willow Catkin-like Co4S3–WS2 Nanostructured Electrocatalyst for Efficient Overall Alkaline Water Splitting\",\"authors\":\"Jiani Wang,&nbsp;Qian Ling,&nbsp;Yuxiang Yao,&nbsp;Denglin Zhu,&nbsp;Sizhan Shu,&nbsp;Zile Zhou,&nbsp;Xuefei Wu* and Pingfan Wu*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0400410.1021/acsanm.4c04004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Exploring catalysts with high catalytic activity, abundant reserves, and low cost is of great significance for the hydrogen evolution reaction (HER). Polyoxometalates (POMs) have attracted extensive attention in recent years due to their rich structure and unique electrocatalytic properties. In this study, a nanostructured Co<sub>4</sub>S<sub>3</sub>–WS<sub>2</sub> electrocatalyst was synthesized through a hydrothermal reaction using thiourea and polyoxometalate (Co<sub>5</sub>W<sub>19</sub>) as precursors. The synergistic effect between the prepared bimetallic cobalt tungsten sulfide nanomaterial (Co<sub>4</sub>S<sub>3</sub>–WS<sub>2</sub>) promoted electron transfer and improved electrocatalytic performance exhibited excellent electrocatalytic activity with lower overpotentials for hydrogen evolution and oxygen evolution reactions (OER) at 10 mA cm<sup>–2</sup>, namely, 133 mV and 297 mV, respectively, with Tafel slopes of 114 mV dec<sup>–1</sup> and 55 mV dec<sup>–1</sup>. Additionally, the material demonstrated long-term stability during continuous electrocatalysis. The in situ growth of the Co<sub>4</sub>S<sub>3</sub>–WS<sub>2</sub> nanomaterial on carbon cloth via hydrothermal synthesis using the POM precursor provides guidance and inspiration for designing efficient HER electrocatalysts.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c04004\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04004","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

探索催化活性高、储量丰富、成本低廉的催化剂对氢气进化反应(HER)具有重要意义。近年来,聚氧化金属盐(POMs)因其丰富的结构和独特的电催化性能而受到广泛关注。本研究以硫脲和多氧金属酸盐(Co5W19)为前驱体,通过水热反应合成了纳米结构的 Co4S3-WS2 电催化剂。制备的双金属硫化钴钨纳米材料(Co4S3-WS2)具有促进电子转移和改善电催化性能的协同效应,表现出优异的电催化活性,在 10 mA cm-2 的条件下,氢进化和氧进化反应(OER)的过电位较低,分别为 133 mV 和 297 mV,塔菲尔斜率分别为 114 mV dec-1 和 55 mV dec-1。此外,该材料在连续电催化过程中表现出长期稳定性。利用 POM 前驱体通过水热合成在碳布上原位生长 Co4S3-WS2 纳米材料,为设计高效的 HER 电催化剂提供了指导和启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Willow Catkin-like Co4S3–WS2 Nanostructured Electrocatalyst for Efficient Overall Alkaline Water Splitting

Exploring catalysts with high catalytic activity, abundant reserves, and low cost is of great significance for the hydrogen evolution reaction (HER). Polyoxometalates (POMs) have attracted extensive attention in recent years due to their rich structure and unique electrocatalytic properties. In this study, a nanostructured Co4S3–WS2 electrocatalyst was synthesized through a hydrothermal reaction using thiourea and polyoxometalate (Co5W19) as precursors. The synergistic effect between the prepared bimetallic cobalt tungsten sulfide nanomaterial (Co4S3–WS2) promoted electron transfer and improved electrocatalytic performance exhibited excellent electrocatalytic activity with lower overpotentials for hydrogen evolution and oxygen evolution reactions (OER) at 10 mA cm–2, namely, 133 mV and 297 mV, respectively, with Tafel slopes of 114 mV dec–1 and 55 mV dec–1. Additionally, the material demonstrated long-term stability during continuous electrocatalysis. The in situ growth of the Co4S3–WS2 nanomaterial on carbon cloth via hydrothermal synthesis using the POM precursor provides guidance and inspiration for designing efficient HER electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1