用于提高聚乙烯醇基复合材料热性能的亲水性铜-石墨烯异质结构填料

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-10-24 DOI:10.1021/acsanm.4c0464510.1021/acsanm.4c04645
Changyu Pu, Xin Wang, Enchan Wang, Yuyang Wu, Xinru Zhang*, Jiahao Liu, Yanqiang Di, Zeyi Jiang, Lin Qiu*, Ting Gao, Aihui Chou and Xinxin Zhang, 
{"title":"用于提高聚乙烯醇基复合材料热性能的亲水性铜-石墨烯异质结构填料","authors":"Changyu Pu,&nbsp;Xin Wang,&nbsp;Enchan Wang,&nbsp;Yuyang Wu,&nbsp;Xinru Zhang*,&nbsp;Jiahao Liu,&nbsp;Yanqiang Di,&nbsp;Zeyi Jiang,&nbsp;Lin Qiu*,&nbsp;Ting Gao,&nbsp;Aihui Chou and Xinxin Zhang,&nbsp;","doi":"10.1021/acsanm.4c0464510.1021/acsanm.4c04645","DOIUrl":null,"url":null,"abstract":"<p >Developing polymer-based composites using high-performance heterostructure fillers is of significant importance for the thermal management of electronic devices. Herein, hydrophilic copper-graphene (Cu-GNP) heterostructure fillers modified with amino functional groups via polydopamine surface modification and calcination reduction were prepared. Subsequently, Cu-GNP/poly(vinyl alcohol) (PVA) thermal conductive composites were fabricated using a solution blending method, where hydrogen bonds were formed between the fillers and the PVA matrix. For composites containing 20 wt % Cu-GNP fillers, their in-plane thermal conductivity reaches 18.49 W·m<sup>–1</sup>·K<sup>–1</sup> and the tensile strength is 25.97 MPa, representing increases of 20.61% and 24.25%, respectively, compared to GNP/PVA composites with equivalent filler contents. This improvement is attributed to the enhanced interaction between Cu-GNP and the PVA matrix due to the formation of hydrogen bonds. Additionally, these composites also exhibit a certain level of electrical insulation properties, making them promising candidates for heat dissipation applications in electronic devices.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrophilic Cu-Graphene Heterostructure Fillers for the Enhancement of the Thermal Performance of Poly(vinyl Alcohol)-Based Composites\",\"authors\":\"Changyu Pu,&nbsp;Xin Wang,&nbsp;Enchan Wang,&nbsp;Yuyang Wu,&nbsp;Xinru Zhang*,&nbsp;Jiahao Liu,&nbsp;Yanqiang Di,&nbsp;Zeyi Jiang,&nbsp;Lin Qiu*,&nbsp;Ting Gao,&nbsp;Aihui Chou and Xinxin Zhang,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0464510.1021/acsanm.4c04645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing polymer-based composites using high-performance heterostructure fillers is of significant importance for the thermal management of electronic devices. Herein, hydrophilic copper-graphene (Cu-GNP) heterostructure fillers modified with amino functional groups via polydopamine surface modification and calcination reduction were prepared. Subsequently, Cu-GNP/poly(vinyl alcohol) (PVA) thermal conductive composites were fabricated using a solution blending method, where hydrogen bonds were formed between the fillers and the PVA matrix. For composites containing 20 wt % Cu-GNP fillers, their in-plane thermal conductivity reaches 18.49 W·m<sup>–1</sup>·K<sup>–1</sup> and the tensile strength is 25.97 MPa, representing increases of 20.61% and 24.25%, respectively, compared to GNP/PVA composites with equivalent filler contents. This improvement is attributed to the enhanced interaction between Cu-GNP and the PVA matrix due to the formation of hydrogen bonds. Additionally, these composites also exhibit a certain level of electrical insulation properties, making them promising candidates for heat dissipation applications in electronic devices.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c04645\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04645","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发使用高性能异质结构填料的聚合物基复合材料对电子设备的热管理具有重要意义。本文制备了亲水性铜-石墨烯(Cu-GNP)异质结构填料,通过多巴胺表面改性和煅烧还原,用氨基官能团对其进行修饰。随后,采用溶液混合法制备了铜-石墨烯/聚乙烯醇(PVA)导热复合材料,填料与 PVA 基质之间形成了氢键。与同等填料含量的 GNP/PVA 复合材料相比,含有 20 wt % Cu-GNP 填料的复合材料的平面内导热系数达到 18.49 W-m-1-K-1,拉伸强度达到 25.97 MPa,分别提高了 20.61% 和 24.25%。这种改善归因于 Cu-GNP 与 PVA 基体之间因形成氢键而增强了相互作用。此外,这些复合材料还具有一定的电绝缘性能,因此很有希望用于电子设备的散热应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrophilic Cu-Graphene Heterostructure Fillers for the Enhancement of the Thermal Performance of Poly(vinyl Alcohol)-Based Composites

Developing polymer-based composites using high-performance heterostructure fillers is of significant importance for the thermal management of electronic devices. Herein, hydrophilic copper-graphene (Cu-GNP) heterostructure fillers modified with amino functional groups via polydopamine surface modification and calcination reduction were prepared. Subsequently, Cu-GNP/poly(vinyl alcohol) (PVA) thermal conductive composites were fabricated using a solution blending method, where hydrogen bonds were formed between the fillers and the PVA matrix. For composites containing 20 wt % Cu-GNP fillers, their in-plane thermal conductivity reaches 18.49 W·m–1·K–1 and the tensile strength is 25.97 MPa, representing increases of 20.61% and 24.25%, respectively, compared to GNP/PVA composites with equivalent filler contents. This improvement is attributed to the enhanced interaction between Cu-GNP and the PVA matrix due to the formation of hydrogen bonds. Additionally, these composites also exhibit a certain level of electrical insulation properties, making them promising candidates for heat dissipation applications in electronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1