Tong-Bao Lv, Yu Kevin Dai, Long Tan*, Jing-Jian Zhang, Zhi-Qing Zhao, Kang-Ming Liao, Hao-Yu Wang, Shuguang Deng and Gui-Ping Dai*,
{"title":"用于高能量密度锂离子电池的混合三维垂直石墨烯纳米片和对齐碳纳米管架构","authors":"Tong-Bao Lv, Yu Kevin Dai, Long Tan*, Jing-Jian Zhang, Zhi-Qing Zhao, Kang-Ming Liao, Hao-Yu Wang, Shuguang Deng and Gui-Ping Dai*, ","doi":"10.1021/acsanm.4c0354710.1021/acsanm.4c03547","DOIUrl":null,"url":null,"abstract":"<p >Here, we synthesized a type of three-dimensional (3D) carbon nanostructure through the plasma-enhanced chemical vapor deposition method, which was composed of carbon nanotubes (CNTs) and graphene nanoflakes (GNFs) embedded on the surface of CNTs. The CNTs have a typical hollow structure with an inner diameter of 15 nm, and the CNT@GNF were grown on vermiculite supported with an Fe–Mo catalyst. The diameter of CNTs and the amount of GNFs on the CNT surface can be controlled by adjusting the reaction time, radio frequency (RF) power, and growth temperature. The continuous bombardment of plasma results in a large number of defects on the surface of the CNTs. It was further confirmed that the radio frequency (RF) power played a key role on the generation of GNFs by providing sufficient carbon sources and creating defects as the active sites on surface of the CNTs. Moreover, small amounts (1.2%) of synthesized CNT@GNF material after purification were employed as an efficient conductive agent for the cathode with high contents of LiFePO<sub>4</sub> (LFP) up to 95.8%. As a result, the CNT@GNF-based LFP electrode showed a superior electrochemical performance. After 450 cycles at a current density of 0.5 C, the battery exhibited a specific capacity of 100 mAh g<sup>–1</sup>, corresponding to a capacity retention rate of 87%. Additionally, a discharge capacity of 61 mAh g<sup>–1</sup> can still be achieved at 10 C. The largely improved electrochemical performance should be ascribed to the well-established conductive networks by the CNT@GNF material in the electrode. Overall, we synthesized nanocarbons with a unique structure in a facile way, which is promising for the application in lithium-ion batteries.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid 3D Vertical Graphene Nanoflake and Aligned Carbon Nanotube Architectures for High-Energy-Density Lithium-Ion Batteries\",\"authors\":\"Tong-Bao Lv, Yu Kevin Dai, Long Tan*, Jing-Jian Zhang, Zhi-Qing Zhao, Kang-Ming Liao, Hao-Yu Wang, Shuguang Deng and Gui-Ping Dai*, \",\"doi\":\"10.1021/acsanm.4c0354710.1021/acsanm.4c03547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Here, we synthesized a type of three-dimensional (3D) carbon nanostructure through the plasma-enhanced chemical vapor deposition method, which was composed of carbon nanotubes (CNTs) and graphene nanoflakes (GNFs) embedded on the surface of CNTs. The CNTs have a typical hollow structure with an inner diameter of 15 nm, and the CNT@GNF were grown on vermiculite supported with an Fe–Mo catalyst. The diameter of CNTs and the amount of GNFs on the CNT surface can be controlled by adjusting the reaction time, radio frequency (RF) power, and growth temperature. The continuous bombardment of plasma results in a large number of defects on the surface of the CNTs. It was further confirmed that the radio frequency (RF) power played a key role on the generation of GNFs by providing sufficient carbon sources and creating defects as the active sites on surface of the CNTs. Moreover, small amounts (1.2%) of synthesized CNT@GNF material after purification were employed as an efficient conductive agent for the cathode with high contents of LiFePO<sub>4</sub> (LFP) up to 95.8%. As a result, the CNT@GNF-based LFP electrode showed a superior electrochemical performance. After 450 cycles at a current density of 0.5 C, the battery exhibited a specific capacity of 100 mAh g<sup>–1</sup>, corresponding to a capacity retention rate of 87%. Additionally, a discharge capacity of 61 mAh g<sup>–1</sup> can still be achieved at 10 C. The largely improved electrochemical performance should be ascribed to the well-established conductive networks by the CNT@GNF material in the electrode. Overall, we synthesized nanocarbons with a unique structure in a facile way, which is promising for the application in lithium-ion batteries.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c03547\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c03547","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hybrid 3D Vertical Graphene Nanoflake and Aligned Carbon Nanotube Architectures for High-Energy-Density Lithium-Ion Batteries
Here, we synthesized a type of three-dimensional (3D) carbon nanostructure through the plasma-enhanced chemical vapor deposition method, which was composed of carbon nanotubes (CNTs) and graphene nanoflakes (GNFs) embedded on the surface of CNTs. The CNTs have a typical hollow structure with an inner diameter of 15 nm, and the CNT@GNF were grown on vermiculite supported with an Fe–Mo catalyst. The diameter of CNTs and the amount of GNFs on the CNT surface can be controlled by adjusting the reaction time, radio frequency (RF) power, and growth temperature. The continuous bombardment of plasma results in a large number of defects on the surface of the CNTs. It was further confirmed that the radio frequency (RF) power played a key role on the generation of GNFs by providing sufficient carbon sources and creating defects as the active sites on surface of the CNTs. Moreover, small amounts (1.2%) of synthesized CNT@GNF material after purification were employed as an efficient conductive agent for the cathode with high contents of LiFePO4 (LFP) up to 95.8%. As a result, the CNT@GNF-based LFP electrode showed a superior electrochemical performance. After 450 cycles at a current density of 0.5 C, the battery exhibited a specific capacity of 100 mAh g–1, corresponding to a capacity retention rate of 87%. Additionally, a discharge capacity of 61 mAh g–1 can still be achieved at 10 C. The largely improved electrochemical performance should be ascribed to the well-established conductive networks by the CNT@GNF material in the electrode. Overall, we synthesized nanocarbons with a unique structure in a facile way, which is promising for the application in lithium-ion batteries.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.