利用数据驱动的潜空间融合策略生成对抗网络进行晶体结构预测

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-25 DOI:10.1021/acs.jctc.4c0109610.1021/acs.jctc.4c01096
Zian Chen, Haichao Li, Chen Zhang, Hongbin Zhang, Yongxiao Zhao, Jian Cao, Tao He, Lina Xu*, Hongping Xiao, Yi Li, Hezhu Shao, Xiaoyu Yang, Xiao He* and Guoyong Fang*, 
{"title":"利用数据驱动的潜空间融合策略生成对抗网络进行晶体结构预测","authors":"Zian Chen,&nbsp;Haichao Li,&nbsp;Chen Zhang,&nbsp;Hongbin Zhang,&nbsp;Yongxiao Zhao,&nbsp;Jian Cao,&nbsp;Tao He,&nbsp;Lina Xu*,&nbsp;Hongping Xiao,&nbsp;Yi Li,&nbsp;Hezhu Shao,&nbsp;Xiaoyu Yang,&nbsp;Xiao He* and Guoyong Fang*,&nbsp;","doi":"10.1021/acs.jctc.4c0109610.1021/acs.jctc.4c01096","DOIUrl":null,"url":null,"abstract":"<p >Crystal structure prediction (CSP) is an important field of material design. Herein, we propose a novel generative adversarial network model, guided by a data-driven approach and incorporating the real physical structure of crystals, to address the complexity of high-dimensional data and improve prediction accuracy in materials science. The model, termed GAN-DDLSF, introduces a novel sampling method called data-driven latent space fusion (DDLSF), which aims to optimize the latent space of generative adversarial networks (GANs) by combining the statistical properties of real data with a standard Gaussian distribution, effectively mitigating the “mode collapse” problem prevalent in GANs. Our approach introduces a more refined generation mechanism specifically for binary crystal structures such as gallium nitride (GaN). By optimizing for the specific crystallographic features of GaN while maintaining structural rationality, we achieve higher precision and efficiency in predicting and designing structures for this particular material system. The model generates 9321 GaN binary crystal structures, with 16.59% reaching a stable state and 24.21% found to be metastable. These results can significantly enhance the accuracy of crystal structure predictions and provide valuable insights into the potential of the GAN-DDLSF approach for the discovery and design of binary, ternary, and multinary materials, offering new perspectives and methods for materials science research and applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal Structure Prediction Using Generative Adversarial Network with Data-Driven Latent Space Fusion Strategy\",\"authors\":\"Zian Chen,&nbsp;Haichao Li,&nbsp;Chen Zhang,&nbsp;Hongbin Zhang,&nbsp;Yongxiao Zhao,&nbsp;Jian Cao,&nbsp;Tao He,&nbsp;Lina Xu*,&nbsp;Hongping Xiao,&nbsp;Yi Li,&nbsp;Hezhu Shao,&nbsp;Xiaoyu Yang,&nbsp;Xiao He* and Guoyong Fang*,&nbsp;\",\"doi\":\"10.1021/acs.jctc.4c0109610.1021/acs.jctc.4c01096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Crystal structure prediction (CSP) is an important field of material design. Herein, we propose a novel generative adversarial network model, guided by a data-driven approach and incorporating the real physical structure of crystals, to address the complexity of high-dimensional data and improve prediction accuracy in materials science. The model, termed GAN-DDLSF, introduces a novel sampling method called data-driven latent space fusion (DDLSF), which aims to optimize the latent space of generative adversarial networks (GANs) by combining the statistical properties of real data with a standard Gaussian distribution, effectively mitigating the “mode collapse” problem prevalent in GANs. Our approach introduces a more refined generation mechanism specifically for binary crystal structures such as gallium nitride (GaN). By optimizing for the specific crystallographic features of GaN while maintaining structural rationality, we achieve higher precision and efficiency in predicting and designing structures for this particular material system. The model generates 9321 GaN binary crystal structures, with 16.59% reaching a stable state and 24.21% found to be metastable. These results can significantly enhance the accuracy of crystal structure predictions and provide valuable insights into the potential of the GAN-DDLSF approach for the discovery and design of binary, ternary, and multinary materials, offering new perspectives and methods for materials science research and applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jctc.4c01096\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c01096","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶体结构预测(CSP)是材料设计的一个重要领域。在此,我们提出了一种新颖的生成对抗网络模型,该模型以数据驱动方法为指导,并结合了晶体的真实物理结构,以解决高维数据的复杂性并提高材料科学中的预测精度。该模型被称为 GAN-DDLSF,它引入了一种名为数据驱动潜空间融合(DDLSF)的新型采样方法,旨在通过将真实数据的统计特性与标准高斯分布相结合来优化生成式对抗网络(GANs)的潜空间,从而有效缓解 GANs 中普遍存在的 "模式崩溃 "问题。我们的方法专门针对氮化镓(GaN)等二元晶体结构引入了更精细的生成机制。通过优化氮化镓的特定晶体学特征,同时保持结构的合理性,我们在预测和设计这一特定材料系统的结构时实现了更高的精度和效率。该模型生成了 9321 个氮化镓二元晶体结构,其中 16.59% 达到稳定状态,24.21% 属于可稳定状态。这些结果可以大大提高晶体结构预测的准确性,并为 GAN-DDLSF 方法发现和设计二元、三元和多元材料的潜力提供了宝贵的见解,为材料科学研究和应用提供了新的视角和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystal Structure Prediction Using Generative Adversarial Network with Data-Driven Latent Space Fusion Strategy

Crystal structure prediction (CSP) is an important field of material design. Herein, we propose a novel generative adversarial network model, guided by a data-driven approach and incorporating the real physical structure of crystals, to address the complexity of high-dimensional data and improve prediction accuracy in materials science. The model, termed GAN-DDLSF, introduces a novel sampling method called data-driven latent space fusion (DDLSF), which aims to optimize the latent space of generative adversarial networks (GANs) by combining the statistical properties of real data with a standard Gaussian distribution, effectively mitigating the “mode collapse” problem prevalent in GANs. Our approach introduces a more refined generation mechanism specifically for binary crystal structures such as gallium nitride (GaN). By optimizing for the specific crystallographic features of GaN while maintaining structural rationality, we achieve higher precision and efficiency in predicting and designing structures for this particular material system. The model generates 9321 GaN binary crystal structures, with 16.59% reaching a stable state and 24.21% found to be metastable. These results can significantly enhance the accuracy of crystal structure predictions and provide valuable insights into the potential of the GAN-DDLSF approach for the discovery and design of binary, ternary, and multinary materials, offering new perspectives and methods for materials science research and applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1