Kyungwha Chung, Soohyun Lee, Nathan Grain, Kyeongdeuk Moon, Seungyeon Han, Subin Yu, Haeun Kang, Dong Ha Kim, Inhee Choi, Sungho Park*, Seokhyoung Kim* and Luke P. Lee*,
{"title":"通过自对准纳米双星实现生物腔量子电动力学:QED-SANDs","authors":"Kyungwha Chung, Soohyun Lee, Nathan Grain, Kyeongdeuk Moon, Seungyeon Han, Subin Yu, Haeun Kang, Dong Ha Kim, Inhee Choi, Sungho Park*, Seokhyoung Kim* and Luke P. Lee*, ","doi":"10.1021/jacs.4c1108310.1021/jacs.4c11083","DOIUrl":null,"url":null,"abstract":"<p >Quantum mechanics is applied to create numerous electronic devices, including lasers, electron microscopes, magnetic resonance imaging, and quantum information technology. However, the practical realization of cavity quantum electrodynamics (QED) in various applications is limited due to the demanding conditions required for achieving strong coupling between an optical cavity and excitonic matter. Here, we present biological cavity QED with self-aligned nanoring doublets: QED-SANDs, which exhibit robust room-temperature strong coupling with a biomolecular emitter, chlorophyll-<i>a</i>. We observe the emergence of plasmon-exciton polaritons, which manifest as a bifurcation of the plasmonic scattering peak of biological QED-SANDs into two distinct polariton states with Rabi splitting up to ∼200 meV. We elucidate the mechanistic origin of strong coupling using finite-element modeling and quantify the coupling strength by employing temporal coupled-mode theory to obtain the coupling strength up to approximately 3.6 times the magnitude of the intrinsic decay rate of QED-SANDs. Furthermore, the robust presence of the polaritons is verified through photoluminescence measurements at room temperature, from which strong light emission from the lower polariton state is observed, while emission from the upper polariton state is quenched. QED-SANDs present significant potential for groundbreaking insights into biomolecular behavior in nanocavities, especially in the context of quantum biology.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"31150–31158 31150–31158"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological Cavity Quantum Electrodynamics via Self-Aligned Nanoring Doublets: QED-SANDs\",\"authors\":\"Kyungwha Chung, Soohyun Lee, Nathan Grain, Kyeongdeuk Moon, Seungyeon Han, Subin Yu, Haeun Kang, Dong Ha Kim, Inhee Choi, Sungho Park*, Seokhyoung Kim* and Luke P. Lee*, \",\"doi\":\"10.1021/jacs.4c1108310.1021/jacs.4c11083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Quantum mechanics is applied to create numerous electronic devices, including lasers, electron microscopes, magnetic resonance imaging, and quantum information technology. However, the practical realization of cavity quantum electrodynamics (QED) in various applications is limited due to the demanding conditions required for achieving strong coupling between an optical cavity and excitonic matter. Here, we present biological cavity QED with self-aligned nanoring doublets: QED-SANDs, which exhibit robust room-temperature strong coupling with a biomolecular emitter, chlorophyll-<i>a</i>. We observe the emergence of plasmon-exciton polaritons, which manifest as a bifurcation of the plasmonic scattering peak of biological QED-SANDs into two distinct polariton states with Rabi splitting up to ∼200 meV. We elucidate the mechanistic origin of strong coupling using finite-element modeling and quantify the coupling strength by employing temporal coupled-mode theory to obtain the coupling strength up to approximately 3.6 times the magnitude of the intrinsic decay rate of QED-SANDs. Furthermore, the robust presence of the polaritons is verified through photoluminescence measurements at room temperature, from which strong light emission from the lower polariton state is observed, while emission from the upper polariton state is quenched. QED-SANDs present significant potential for groundbreaking insights into biomolecular behavior in nanocavities, especially in the context of quantum biology.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 45\",\"pages\":\"31150–31158 31150–31158\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c11083\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c11083","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biological Cavity Quantum Electrodynamics via Self-Aligned Nanoring Doublets: QED-SANDs
Quantum mechanics is applied to create numerous electronic devices, including lasers, electron microscopes, magnetic resonance imaging, and quantum information technology. However, the practical realization of cavity quantum electrodynamics (QED) in various applications is limited due to the demanding conditions required for achieving strong coupling between an optical cavity and excitonic matter. Here, we present biological cavity QED with self-aligned nanoring doublets: QED-SANDs, which exhibit robust room-temperature strong coupling with a biomolecular emitter, chlorophyll-a. We observe the emergence of plasmon-exciton polaritons, which manifest as a bifurcation of the plasmonic scattering peak of biological QED-SANDs into two distinct polariton states with Rabi splitting up to ∼200 meV. We elucidate the mechanistic origin of strong coupling using finite-element modeling and quantify the coupling strength by employing temporal coupled-mode theory to obtain the coupling strength up to approximately 3.6 times the magnitude of the intrinsic decay rate of QED-SANDs. Furthermore, the robust presence of the polaritons is verified through photoluminescence measurements at room temperature, from which strong light emission from the lower polariton state is observed, while emission from the upper polariton state is quenched. QED-SANDs present significant potential for groundbreaking insights into biomolecular behavior in nanocavities, especially in the context of quantum biology.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.