Yan Xiong, Colin Yancey, Heon-Joon Lee, Dayoung Gloria Lee, Emily Helm, Byunghwa Kang, Alison Grinthal, Daniel McKeen, Oleg Gang* and Rebecca Schulman*,
{"title":"根据不同的化学输入引导纳米粒子组织","authors":"Yan Xiong, Colin Yancey, Heon-Joon Lee, Dayoung Gloria Lee, Emily Helm, Byunghwa Kang, Alison Grinthal, Daniel McKeen, Oleg Gang* and Rebecca Schulman*, ","doi":"10.1021/jacs.4c0725910.1021/jacs.4c07259","DOIUrl":null,"url":null,"abstract":"<p >Signaling cascades are crucial for transducing stimuli in biological systems, enabling multiple stimuli to regulate a downstream target with precisely controlled timing and amplifying signals through a series of intermediary reactions. Developing a robust signaling system with such capabilities would be pivotal for programming complex behaviors in synthetic DNA-based molecular devices. However, although “software” such as nucleic acid circuits could potentially be harnessed to relay signals to DNA-based nanostructure hardware, such explorations have been limited. Here, we develop a platform for transducing a variety of stimuli via messenger-mediated reactions to regulate the release and reloading of gold nanoparticles (AuNPs) in a 3D DNA framework. In the first step, an in vitro transcription circuit is engineered to sense and amplify chemical stimuli, including arbitrary DNA sequences and proteins, producing RNA. In the second step, the RNA releases the DNA-coated AuNPs from the DNA framework via a strand displacement reaction. AuNP reloading is controlled by a separate step driven by degradation of the RNA. Our platform holds promise for applications requiring dynamic multiagent control over DNA-based devices, offering a versatile tool for advanced molecular device engineering.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"30802–30812 30802–30812"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directing Nanoparticle Organization in Response to Diverse Chemical Inputs\",\"authors\":\"Yan Xiong, Colin Yancey, Heon-Joon Lee, Dayoung Gloria Lee, Emily Helm, Byunghwa Kang, Alison Grinthal, Daniel McKeen, Oleg Gang* and Rebecca Schulman*, \",\"doi\":\"10.1021/jacs.4c0725910.1021/jacs.4c07259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Signaling cascades are crucial for transducing stimuli in biological systems, enabling multiple stimuli to regulate a downstream target with precisely controlled timing and amplifying signals through a series of intermediary reactions. Developing a robust signaling system with such capabilities would be pivotal for programming complex behaviors in synthetic DNA-based molecular devices. However, although “software” such as nucleic acid circuits could potentially be harnessed to relay signals to DNA-based nanostructure hardware, such explorations have been limited. Here, we develop a platform for transducing a variety of stimuli via messenger-mediated reactions to regulate the release and reloading of gold nanoparticles (AuNPs) in a 3D DNA framework. In the first step, an in vitro transcription circuit is engineered to sense and amplify chemical stimuli, including arbitrary DNA sequences and proteins, producing RNA. In the second step, the RNA releases the DNA-coated AuNPs from the DNA framework via a strand displacement reaction. AuNP reloading is controlled by a separate step driven by degradation of the RNA. Our platform holds promise for applications requiring dynamic multiagent control over DNA-based devices, offering a versatile tool for advanced molecular device engineering.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 45\",\"pages\":\"30802–30812 30802–30812\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c07259\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c07259","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
信号级联是生物系统中传递刺激的关键,它能使多种刺激以精确控制的时间调节下游目标,并通过一系列中间反应放大信号。开发具有这种能力的强大信号系统,对于在基于 DNA 的合成分子装置中编程复杂行为至关重要。然而,尽管核酸电路等 "软件 "有可能被用来向基于 DNA 的纳米结构硬件传递信号,但这方面的探索还很有限。在这里,我们开发了一个平台,通过信使介导的反应传递各种刺激,以调节三维 DNA 框架中金纳米粒子(AuNPs)的释放和重载。第一步,设计一个体外转录电路,以感知和放大化学刺激,包括任意 DNA 序列和蛋白质,产生 RNA。第二步,RNA 通过链置换反应将 DNA 涂层 AuNPs 从 DNA 框架中释放出来。AuNP 的重新装载由 RNA 降解驱动的单独步骤控制。我们的平台有望应用于需要对基于 DNA 的设备进行动态多代理控制的领域,为先进的分子设备工程提供了一种多功能工具。
Directing Nanoparticle Organization in Response to Diverse Chemical Inputs
Signaling cascades are crucial for transducing stimuli in biological systems, enabling multiple stimuli to regulate a downstream target with precisely controlled timing and amplifying signals through a series of intermediary reactions. Developing a robust signaling system with such capabilities would be pivotal for programming complex behaviors in synthetic DNA-based molecular devices. However, although “software” such as nucleic acid circuits could potentially be harnessed to relay signals to DNA-based nanostructure hardware, such explorations have been limited. Here, we develop a platform for transducing a variety of stimuli via messenger-mediated reactions to regulate the release and reloading of gold nanoparticles (AuNPs) in a 3D DNA framework. In the first step, an in vitro transcription circuit is engineered to sense and amplify chemical stimuli, including arbitrary DNA sequences and proteins, producing RNA. In the second step, the RNA releases the DNA-coated AuNPs from the DNA framework via a strand displacement reaction. AuNP reloading is controlled by a separate step driven by degradation of the RNA. Our platform holds promise for applications requiring dynamic multiagent control over DNA-based devices, offering a versatile tool for advanced molecular device engineering.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.