用于紫外-可见光谱光电探测器的 CsPbBr3 包晶量子点/p-GaN 异质结

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-11-13 DOI:10.1063/5.0238223
Yushen Liu, Bingjie Ye, Yang Gao, Xifeng Yang, Mingfa Peng, Guofeng Yang
{"title":"用于紫外-可见光谱光电探测器的 CsPbBr3 包晶量子点/p-GaN 异质结","authors":"Yushen Liu, Bingjie Ye, Yang Gao, Xifeng Yang, Mingfa Peng, Guofeng Yang","doi":"10.1063/5.0238223","DOIUrl":null,"url":null,"abstract":"All-inorganic perovskites have attracted increasing attention because of their strong environmental stability and excellent photoelectric properties. However, the limited spectral response range of perovskite photodetectors restricts them in practical applications. In this work, an ultraviolet–visible photodetector with a wide spectral response and a high responsivity was prepared by constructing a CsPbBr3 quantum dots (QDs)/p-GaN heterojunction. The type-II energy band alignment formed by the heterojunction is conducive to the transport of photogenerated carriers, resulting in a high responsivity. Under certain conditions, the device can obtain responsivity values of 5 A/W and 850 mA/W under 350 and 725 nm illumination, respectively, which are comparable to those of other perovskite-based photodetectors. In addition, the photoresponse mechanism of the device is revealed through first-principles calculations of the heterojunction and the device. The enhanced light absorption of the heterojunction and the special band bending under different bias voltages improve the photoelectric performance of the device. This work can provide valuable insights into high-performance photodetectors based on all-inorganic perovskite QDs heterojunctions in terms of band regulation and device performance improvement.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"98 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CsPbBr3 perovskite quantum dots/p-GaN heterojunction for ultraviolet-visible spectrum photodetectors\",\"authors\":\"Yushen Liu, Bingjie Ye, Yang Gao, Xifeng Yang, Mingfa Peng, Guofeng Yang\",\"doi\":\"10.1063/5.0238223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-inorganic perovskites have attracted increasing attention because of their strong environmental stability and excellent photoelectric properties. However, the limited spectral response range of perovskite photodetectors restricts them in practical applications. In this work, an ultraviolet–visible photodetector with a wide spectral response and a high responsivity was prepared by constructing a CsPbBr3 quantum dots (QDs)/p-GaN heterojunction. The type-II energy band alignment formed by the heterojunction is conducive to the transport of photogenerated carriers, resulting in a high responsivity. Under certain conditions, the device can obtain responsivity values of 5 A/W and 850 mA/W under 350 and 725 nm illumination, respectively, which are comparable to those of other perovskite-based photodetectors. In addition, the photoresponse mechanism of the device is revealed through first-principles calculations of the heterojunction and the device. The enhanced light absorption of the heterojunction and the special band bending under different bias voltages improve the photoelectric performance of the device. This work can provide valuable insights into high-performance photodetectors based on all-inorganic perovskite QDs heterojunctions in terms of band regulation and device performance improvement.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0238223\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0238223","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

全无机包晶石具有很强的环境稳定性和出色的光电特性,因此受到越来越多的关注。然而,包晶石光电探测器有限的光谱响应范围限制了其实际应用。在这项工作中,通过构建 CsPbBr3 量子点(QDs)/p-GaN 异质结,制备了一种具有宽光谱响应和高响应率的紫外-可见光光电探测器。异质结形成的 II 型能带排列有利于光生载流子的传输,从而实现了高响应率。在特定条件下,该器件可在 350 纳米和 725 纳米光照下分别获得 5 A/W 和 850 mA/W 的响应值,与其他基于包晶石的光电探测器相当。此外,通过对异质结和器件的第一性原理计算,揭示了该器件的光响应机制。异质结的光吸收增强和不同偏置电压下的特殊带弯曲改善了该器件的光电性能。这项工作可为基于全无机包晶 QDs 异质结的高性能光电探测器在能带调节和器件性能改善方面提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CsPbBr3 perovskite quantum dots/p-GaN heterojunction for ultraviolet-visible spectrum photodetectors
All-inorganic perovskites have attracted increasing attention because of their strong environmental stability and excellent photoelectric properties. However, the limited spectral response range of perovskite photodetectors restricts them in practical applications. In this work, an ultraviolet–visible photodetector with a wide spectral response and a high responsivity was prepared by constructing a CsPbBr3 quantum dots (QDs)/p-GaN heterojunction. The type-II energy band alignment formed by the heterojunction is conducive to the transport of photogenerated carriers, resulting in a high responsivity. Under certain conditions, the device can obtain responsivity values of 5 A/W and 850 mA/W under 350 and 725 nm illumination, respectively, which are comparable to those of other perovskite-based photodetectors. In addition, the photoresponse mechanism of the device is revealed through first-principles calculations of the heterojunction and the device. The enhanced light absorption of the heterojunction and the special band bending under different bias voltages improve the photoelectric performance of the device. This work can provide valuable insights into high-performance photodetectors based on all-inorganic perovskite QDs heterojunctions in terms of band regulation and device performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
High saturation power anti-waveguide asymmetric super-large optical cavity SOA with low confinement factor and ultra-narrow vertical divergence angle Antidot lattices for magnetic reservoir computing Decisive role of organic fluorophore and surface defect state in the photoluminescence of carbon quantum dots Exponential dependence between motion acceleration and diameters of skyrmions under the driven of periodical strains Hot phonon effect in mid-infrared HgTe/CdHgTe quantum wells evaluated by quasi-steady-state photoluminescence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1