在 RhFeOx/P25 上构建活性 Rh-TiOx 表面间隙,实现 CO2 与乙醇的高效氢化反应

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-11-14 DOI:10.1021/acscatal.4c04954
Chenfan Gong, Hao Wang, Jian Zhang, Chengguang Yang, Xianni Bu, Haiyan Yang, Jiong Li, Peng Gao
{"title":"在 RhFeOx/P25 上构建活性 Rh-TiOx 表面间隙,实现 CO2 与乙醇的高效氢化反应","authors":"Chenfan Gong, Hao Wang, Jian Zhang, Chengguang Yang, Xianni Bu, Haiyan Yang, Jiong Li, Peng Gao","doi":"10.1021/acscatal.4c04954","DOIUrl":null,"url":null,"abstract":"Hydrogenation of CO<sub>2</sub> to ethanol is an efficient process for the utilization of CO<sub>2</sub> along with the production of value-added chemicals. However, CO<sub>2</sub> hydrogenation to ethanol is a complicated reaction, requiring the catalyst to activate CO<sub>2</sub> efficiently and accurately regulate the C–C coupling to achieve a high ethanol selectivity simultaneously. Herein, we report the synthesis of RhFeO<sub><i>x</i></sub> catalysts supported on TiO<sub>2</sub> with different crystal phase compositions (anatase, rutile, and P25), which were applied for the selective CO<sub>2</sub> hydrogenation to ethanol. The RhFeO<sub><i>x</i></sub>/P25 catalyst presented a high dispersion of Rh nanoparticles on the P25 support with abundant Rh<sup>0</sup>–Rh<sup>δ+</sup>–O<sub>V</sub>–Ti<sup>3+</sup> (O<sub>V</sub>: oxygen vacancy) interfacial sites over the anatase/rutile junction. The optimized RhFeO<sub><i>x</i></sub>/P25 catalyst exhibited a high ethanol space–time yield of 18.7 mmol g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> and a high Rh turnover frequency of 544.8 h<sup>–1</sup> with 90.5% ethanol selectivity. An in-depth investigation via various ex situ and in situ characterizations as well as H<sub>2</sub>/D<sub>2</sub> exchange and C<sub>2</sub>H<sub>4</sub> pulse hydrogenation experiments demonstrated that the Rh<sup>0</sup>–Rh<sup>δ+</sup>–O<sub>v</sub>–Ti<sup>3+</sup> interfacial sites played a crucial role in the conversion of CO<sub>2</sub> to ethanol. The surface Rh<sup>0</sup> sites facilitated the CO<sub>2</sub> activation and hydrogenation, while the Rh<sup>0</sup>–Rh<sup>δ+</sup>–O<sub>v</sub>–Ti<sup>3+</sup> interfacial sites boosted the C–C coupling to produce ethanol. The high-performance RhFeO<sub><i>x</i></sub>/P25 catalyst also provides an attractive route for highly efficient ethanol synthesis via CO<sub>2</sub> hydrogenation.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Active Rh–TiOx Interfacial Sites on RhFeOx/P25 for Highly Efficient Hydrogenation of CO2 to Ethanol\",\"authors\":\"Chenfan Gong, Hao Wang, Jian Zhang, Chengguang Yang, Xianni Bu, Haiyan Yang, Jiong Li, Peng Gao\",\"doi\":\"10.1021/acscatal.4c04954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogenation of CO<sub>2</sub> to ethanol is an efficient process for the utilization of CO<sub>2</sub> along with the production of value-added chemicals. However, CO<sub>2</sub> hydrogenation to ethanol is a complicated reaction, requiring the catalyst to activate CO<sub>2</sub> efficiently and accurately regulate the C–C coupling to achieve a high ethanol selectivity simultaneously. Herein, we report the synthesis of RhFeO<sub><i>x</i></sub> catalysts supported on TiO<sub>2</sub> with different crystal phase compositions (anatase, rutile, and P25), which were applied for the selective CO<sub>2</sub> hydrogenation to ethanol. The RhFeO<sub><i>x</i></sub>/P25 catalyst presented a high dispersion of Rh nanoparticles on the P25 support with abundant Rh<sup>0</sup>–Rh<sup>δ+</sup>–O<sub>V</sub>–Ti<sup>3+</sup> (O<sub>V</sub>: oxygen vacancy) interfacial sites over the anatase/rutile junction. The optimized RhFeO<sub><i>x</i></sub>/P25 catalyst exhibited a high ethanol space–time yield of 18.7 mmol g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> and a high Rh turnover frequency of 544.8 h<sup>–1</sup> with 90.5% ethanol selectivity. An in-depth investigation via various ex situ and in situ characterizations as well as H<sub>2</sub>/D<sub>2</sub> exchange and C<sub>2</sub>H<sub>4</sub> pulse hydrogenation experiments demonstrated that the Rh<sup>0</sup>–Rh<sup>δ+</sup>–O<sub>v</sub>–Ti<sup>3+</sup> interfacial sites played a crucial role in the conversion of CO<sub>2</sub> to ethanol. The surface Rh<sup>0</sup> sites facilitated the CO<sub>2</sub> activation and hydrogenation, while the Rh<sup>0</sup>–Rh<sup>δ+</sup>–O<sub>v</sub>–Ti<sup>3+</sup> interfacial sites boosted the C–C coupling to produce ethanol. The high-performance RhFeO<sub><i>x</i></sub>/P25 catalyst also provides an attractive route for highly efficient ethanol synthesis via CO<sub>2</sub> hydrogenation.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c04954\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04954","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳加氢制乙醇是利用二氧化碳生产高附加值化学品的高效工艺。然而,CO2 加氢制乙醇是一个复杂的反应,需要催化剂高效活化 CO2 并精确调节 C-C 偶联,以同时获得较高的乙醇选择性。在此,我们报告了在不同晶相组成(锐钛型、金红石型和 P25 型)的 TiO2 上支撑的 RhFeOx 催化剂的合成,并将其应用于二氧化碳加氢制乙醇的选择性反应。RhFeOx/P25 催化剂在 P25 载体上的 Rh 纳米粒子高度分散,锐钛矿/金红石交界处有大量的 Rh0-Rhδ+-OV-Ti3+(OV:氧空位)界面位点。优化后的 RhFeOx/P25 催化剂乙醇时空产率高达 18.7 mmol gcat-1 h-1,Rh 转化频率高达 544.8 h-1,乙醇选择性为 90.5%。通过各种原位和原位表征以及 H2/D2 交换和 C2H4 脉冲加氢实验进行的深入研究表明,Rh0-Rhδ+-Ov-Ti3+ 界面位点在二氧化碳转化为乙醇的过程中发挥了关键作用。表面的 Rh0 位点促进了 CO2 的活化和氢化,而 Rh0-Rhδ+-Ov-Ti3+ 界面位点则促进了 C-C 偶联生成乙醇。高性能的 RhFeOx/P25 催化剂也为通过 CO2 加氢高效合成乙醇提供了一条极具吸引力的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of Active Rh–TiOx Interfacial Sites on RhFeOx/P25 for Highly Efficient Hydrogenation of CO2 to Ethanol
Hydrogenation of CO2 to ethanol is an efficient process for the utilization of CO2 along with the production of value-added chemicals. However, CO2 hydrogenation to ethanol is a complicated reaction, requiring the catalyst to activate CO2 efficiently and accurately regulate the C–C coupling to achieve a high ethanol selectivity simultaneously. Herein, we report the synthesis of RhFeOx catalysts supported on TiO2 with different crystal phase compositions (anatase, rutile, and P25), which were applied for the selective CO2 hydrogenation to ethanol. The RhFeOx/P25 catalyst presented a high dispersion of Rh nanoparticles on the P25 support with abundant Rh0–Rhδ+–OV–Ti3+ (OV: oxygen vacancy) interfacial sites over the anatase/rutile junction. The optimized RhFeOx/P25 catalyst exhibited a high ethanol space–time yield of 18.7 mmol gcat–1 h–1 and a high Rh turnover frequency of 544.8 h–1 with 90.5% ethanol selectivity. An in-depth investigation via various ex situ and in situ characterizations as well as H2/D2 exchange and C2H4 pulse hydrogenation experiments demonstrated that the Rh0–Rhδ+–Ov–Ti3+ interfacial sites played a crucial role in the conversion of CO2 to ethanol. The surface Rh0 sites facilitated the CO2 activation and hydrogenation, while the Rh0–Rhδ+–Ov–Ti3+ interfacial sites boosted the C–C coupling to produce ethanol. The high-performance RhFeOx/P25 catalyst also provides an attractive route for highly efficient ethanol synthesis via CO2 hydrogenation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1