Yu Yang, Igor Kladarić, Maxwell Drimmer, Uwe von Lüpke, Daan Lenterman, Joost Bus, Stefano Marti, Matteo Fadel, Yiwen Chu
{"title":"机械量子比特","authors":"Yu Yang, Igor Kladarić, Maxwell Drimmer, Uwe von Lüpke, Daan Lenterman, Joost Bus, Stefano Marti, Matteo Fadel, Yiwen Chu","doi":"10.1126/science.adr2464","DOIUrl":null,"url":null,"abstract":"<div >Although strong nonlinear interactions between quantized excitations are an important resource for quantum technologies based on bosonic oscillator modes, most electromagnetic and mechanical nonlinearities are far too weak to allow for nonlinear effects to be observed at the single-quantum level. This limitation has been overcome in electromagnetic resonators by coupling them to other strongly nonlinear quantum systems such as atoms and superconducting qubits. We demonstrate the realization of the single-phonon nonlinear regime in a solid-state mechanical system. The single-phonon anharmonicity in our system exceeds the decoherence rate by a factor of 6.8, allowing us to use it as a mechanical qubit and demonstrate initialization, readout, and single-qubit gates. Our approach provides a powerful quantum acoustics platform for quantum simulations, sensing, and information processing.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"386 6723","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mechanical qubit\",\"authors\":\"Yu Yang, Igor Kladarić, Maxwell Drimmer, Uwe von Lüpke, Daan Lenterman, Joost Bus, Stefano Marti, Matteo Fadel, Yiwen Chu\",\"doi\":\"10.1126/science.adr2464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Although strong nonlinear interactions between quantized excitations are an important resource for quantum technologies based on bosonic oscillator modes, most electromagnetic and mechanical nonlinearities are far too weak to allow for nonlinear effects to be observed at the single-quantum level. This limitation has been overcome in electromagnetic resonators by coupling them to other strongly nonlinear quantum systems such as atoms and superconducting qubits. We demonstrate the realization of the single-phonon nonlinear regime in a solid-state mechanical system. The single-phonon anharmonicity in our system exceeds the decoherence rate by a factor of 6.8, allowing us to use it as a mechanical qubit and demonstrate initialization, readout, and single-qubit gates. Our approach provides a powerful quantum acoustics platform for quantum simulations, sensing, and information processing.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"386 6723\",\"pages\":\"\"},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adr2464\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adr2464","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Although strong nonlinear interactions between quantized excitations are an important resource for quantum technologies based on bosonic oscillator modes, most electromagnetic and mechanical nonlinearities are far too weak to allow for nonlinear effects to be observed at the single-quantum level. This limitation has been overcome in electromagnetic resonators by coupling them to other strongly nonlinear quantum systems such as atoms and superconducting qubits. We demonstrate the realization of the single-phonon nonlinear regime in a solid-state mechanical system. The single-phonon anharmonicity in our system exceeds the decoherence rate by a factor of 6.8, allowing us to use it as a mechanical qubit and demonstrate initialization, readout, and single-qubit gates. Our approach provides a powerful quantum acoustics platform for quantum simulations, sensing, and information processing.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.