Chunyi Xu, Song Sun, Jinhui Zhao, Xin Zhang, Xiaolei Feng, Simon A.T. Redfern, Chaoqun Xia, Huiyang Gou, Gongkai Wang
{"title":"用于高级钠储存的微小合金颗粒中致密化的晶界应力分散","authors":"Chunyi Xu, Song Sun, Jinhui Zhao, Xin Zhang, Xiaolei Feng, Simon A.T. Redfern, Chaoqun Xia, Huiyang Gou, Gongkai Wang","doi":"10.1016/j.actamat.2024.120570","DOIUrl":null,"url":null,"abstract":"Microsized alloying anodes are the next practical step in achieving advanced batteries with higher energy density, yet the major challenge, associated with their alloying processing, lies in electro-mechanical failure phenomena caused by stress concentration. Here, we develop a universal grain boundaries (GBs) strategy on microsized alloying anodes for sodium ion batteries. The densified GBs function as fast diffusion paths to promote more homogenous sodiation. They facilitate consistent sodiation kinetics by stress transportation and delocalization, leading to electrochemical attributes superior to reported nanosized anodes (microsized Bi as a model, 200.5 mAh/g@277.5C, 1043.1 mAh/cm<sup>3</sup>@40C, high tap density of ∼2.4 g/cm<sup>3</sup>). Furthermore, GBs also act as dislocation catchers and barriers, significantly altering the sodiation behavior and subsequent structural evolution, and giving rise to enhanced fracture resistance and cycling stability. This work provides the key insight into GB-associated effects in microsized anodes on electro-mechanical coupling process, essential for development of advanced batteries.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress Delocalization by Grain Boundaries Densified in Microsized Alloying Particles for Advanced Sodium Storage\",\"authors\":\"Chunyi Xu, Song Sun, Jinhui Zhao, Xin Zhang, Xiaolei Feng, Simon A.T. Redfern, Chaoqun Xia, Huiyang Gou, Gongkai Wang\",\"doi\":\"10.1016/j.actamat.2024.120570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microsized alloying anodes are the next practical step in achieving advanced batteries with higher energy density, yet the major challenge, associated with their alloying processing, lies in electro-mechanical failure phenomena caused by stress concentration. Here, we develop a universal grain boundaries (GBs) strategy on microsized alloying anodes for sodium ion batteries. The densified GBs function as fast diffusion paths to promote more homogenous sodiation. They facilitate consistent sodiation kinetics by stress transportation and delocalization, leading to electrochemical attributes superior to reported nanosized anodes (microsized Bi as a model, 200.5 mAh/g@277.5C, 1043.1 mAh/cm<sup>3</sup>@40C, high tap density of ∼2.4 g/cm<sup>3</sup>). Furthermore, GBs also act as dislocation catchers and barriers, significantly altering the sodiation behavior and subsequent structural evolution, and giving rise to enhanced fracture resistance and cycling stability. This work provides the key insight into GB-associated effects in microsized anodes on electro-mechanical coupling process, essential for development of advanced batteries.\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2024.120570\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120570","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Stress Delocalization by Grain Boundaries Densified in Microsized Alloying Particles for Advanced Sodium Storage
Microsized alloying anodes are the next practical step in achieving advanced batteries with higher energy density, yet the major challenge, associated with their alloying processing, lies in electro-mechanical failure phenomena caused by stress concentration. Here, we develop a universal grain boundaries (GBs) strategy on microsized alloying anodes for sodium ion batteries. The densified GBs function as fast diffusion paths to promote more homogenous sodiation. They facilitate consistent sodiation kinetics by stress transportation and delocalization, leading to electrochemical attributes superior to reported nanosized anodes (microsized Bi as a model, 200.5 mAh/g@277.5C, 1043.1 mAh/cm3@40C, high tap density of ∼2.4 g/cm3). Furthermore, GBs also act as dislocation catchers and barriers, significantly altering the sodiation behavior and subsequent structural evolution, and giving rise to enhanced fracture resistance and cycling stability. This work provides the key insight into GB-associated effects in microsized anodes on electro-mechanical coupling process, essential for development of advanced batteries.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture