Qing Wang , Ruofei Zhao , Haoran Li , Shaojing Sun , Yan Sun , Weimin Gu , Na Wang , Xuli Li
{"title":"氧空位介导的 Bi2WO6/FeOOH 异质结用于高效光 Fenton 降解抗生素和协同杀菌","authors":"Qing Wang , Ruofei Zhao , Haoran Li , Shaojing Sun , Yan Sun , Weimin Gu , Na Wang , Xuli Li","doi":"10.1016/j.seppur.2024.130546","DOIUrl":null,"url":null,"abstract":"<div><div>Photo-Fenton as the advanced oxidation technology shows great potential in water purification, which is limited by the sluggish reaction kinetics. Herein, oxygen vacancy-mediated Bi<sub>2</sub>WO<sub>6</sub>/FeOOH (Vo-BWO/FeOOH) heterojunction has been successfully constructed and performs superior performance for degradation antibiotic wastewater and antibiotic resistant bacteria (ARB) inactivation. The optimal photo-Fenton degradation rate for TCH achieves 0.0833 min<sup>−1</sup> over oxygen vacancy-rich BWO/FeOOH (Vo-r-BWO/FeOOH). The degradation rate of tetracycline reached 100 % within 60 min, while the removal efficiency of <em>E. coli</em> resistant to tetracycline, ampicillin, and kanamycin was 94.1 % at 80 min. Moreover, Vo-r-BWO/FeOOH heterojunction also exhibits excellent durability, strong removal ability for multiple antibiotics and exceptional activity in a practical water environment. The comprehensive study of experiment and density functional theory (DFT) calculations confirms that the synergistic effect of oxygen vacancies accelerates the interfacial charge carriers’ migration and adsorption-activation of H<sub>2</sub>O<sub>2</sub>. Finally, the degradation pathway and toxicity of intermediates have been ascertained. This work provides a valuable strategy for the remediation of antibiotic wastewater resources.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"359 ","pages":"Article 130546"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen vacancy-mediated Bi2WO6/FeOOH heterojunction for efficient photo-Fenton degradation antibiotics and synergistic sterilization\",\"authors\":\"Qing Wang , Ruofei Zhao , Haoran Li , Shaojing Sun , Yan Sun , Weimin Gu , Na Wang , Xuli Li\",\"doi\":\"10.1016/j.seppur.2024.130546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photo-Fenton as the advanced oxidation technology shows great potential in water purification, which is limited by the sluggish reaction kinetics. Herein, oxygen vacancy-mediated Bi<sub>2</sub>WO<sub>6</sub>/FeOOH (Vo-BWO/FeOOH) heterojunction has been successfully constructed and performs superior performance for degradation antibiotic wastewater and antibiotic resistant bacteria (ARB) inactivation. The optimal photo-Fenton degradation rate for TCH achieves 0.0833 min<sup>−1</sup> over oxygen vacancy-rich BWO/FeOOH (Vo-r-BWO/FeOOH). The degradation rate of tetracycline reached 100 % within 60 min, while the removal efficiency of <em>E. coli</em> resistant to tetracycline, ampicillin, and kanamycin was 94.1 % at 80 min. Moreover, Vo-r-BWO/FeOOH heterojunction also exhibits excellent durability, strong removal ability for multiple antibiotics and exceptional activity in a practical water environment. The comprehensive study of experiment and density functional theory (DFT) calculations confirms that the synergistic effect of oxygen vacancies accelerates the interfacial charge carriers’ migration and adsorption-activation of H<sub>2</sub>O<sub>2</sub>. Finally, the degradation pathway and toxicity of intermediates have been ascertained. This work provides a valuable strategy for the remediation of antibiotic wastewater resources.</div></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"359 \",\"pages\":\"Article 130546\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586624042850\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586624042850","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Oxygen vacancy-mediated Bi2WO6/FeOOH heterojunction for efficient photo-Fenton degradation antibiotics and synergistic sterilization
Photo-Fenton as the advanced oxidation technology shows great potential in water purification, which is limited by the sluggish reaction kinetics. Herein, oxygen vacancy-mediated Bi2WO6/FeOOH (Vo-BWO/FeOOH) heterojunction has been successfully constructed and performs superior performance for degradation antibiotic wastewater and antibiotic resistant bacteria (ARB) inactivation. The optimal photo-Fenton degradation rate for TCH achieves 0.0833 min−1 over oxygen vacancy-rich BWO/FeOOH (Vo-r-BWO/FeOOH). The degradation rate of tetracycline reached 100 % within 60 min, while the removal efficiency of E. coli resistant to tetracycline, ampicillin, and kanamycin was 94.1 % at 80 min. Moreover, Vo-r-BWO/FeOOH heterojunction also exhibits excellent durability, strong removal ability for multiple antibiotics and exceptional activity in a practical water environment. The comprehensive study of experiment and density functional theory (DFT) calculations confirms that the synergistic effect of oxygen vacancies accelerates the interfacial charge carriers’ migration and adsorption-activation of H2O2. Finally, the degradation pathway and toxicity of intermediates have been ascertained. This work provides a valuable strategy for the remediation of antibiotic wastewater resources.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.