优化使用干涉测量法、光谱学和恒星大气模型来确定恒星的基本参数

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-11-13 DOI:10.1051/0004-6361/202450105
N. Ebrahimkutty, M. R. Gent, D. Mourard, A. Domiciano de Souza, M. Bergemann, T. Morel, G. Morello, N. Nardetto, B. Plez
{"title":"优化使用干涉测量法、光谱学和恒星大气模型来确定恒星的基本参数","authors":"N. Ebrahimkutty, M. R. Gent, D. Mourard, A. Domiciano de Souza, M. Bergemann, T. Morel, G. Morello, N. Nardetto, B. Plez","doi":"10.1051/0004-6361/202450105","DOIUrl":null,"url":null,"abstract":"<i>Context<i/>. Thanks to recent progress in the field of optical interferometry, instrument sensitivities have now reached the level achieved in the domain of new space missions dedicated to exoplanet and stellar studies. Combining interferometry with other observational approaches enables the determination of stellar parameters and helps improve our understanding of stellar physics.<i>Aims<i/>. In this paper, we aim to demonstrate a new way of using stellar atmosphere models for a joint interpretation of spectroscopic and interferometric observations.<i>Methods<i/>. Starting from a discrete grid of one-dimensional (1D) stellar atmosphere models, we developed a training algorithm, based on an artificial neural network, capable of estimating the spectrum and intensity profile of a star over a range of wavelengths and viewing angles. A minimisation algorithm based on the trained function allowed for the simultaneous fitting of the observational spectrum and interferometric complex visibilities. As a result, coherent and precise stellar parameters can be extracted.<i>Results<i/>. We show the ability of the trained function to match the modelled intensity profiles of stars in the effective temperature range of 4500–7000 K and surface gravity range of 3 to 5 dex, with a relative precision to the model that is better than 0.05%. Using simulated interferometric data and actual spectroscopic measurements, we demonstrated the performance of our algorithm on a sample of five benchmark stars. Using this method, we achieved an accuracy within 0.5% for the angular diameter, radius, and surface gravity, and within 20 K for the effective temperature.<i>Conclusions<i/>. This paper demonstrates a new method of using interferometric data combined with spectroscopic observations. This approach offers an improved determination of the radius, effective temperature, and surface gravity of stars.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimised use of interferometry, spectroscopy, and stellar atmosphere models for determining the fundamental parameters of stars\",\"authors\":\"N. Ebrahimkutty, M. R. Gent, D. Mourard, A. Domiciano de Souza, M. Bergemann, T. Morel, G. Morello, N. Nardetto, B. Plez\",\"doi\":\"10.1051/0004-6361/202450105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Context<i/>. Thanks to recent progress in the field of optical interferometry, instrument sensitivities have now reached the level achieved in the domain of new space missions dedicated to exoplanet and stellar studies. Combining interferometry with other observational approaches enables the determination of stellar parameters and helps improve our understanding of stellar physics.<i>Aims<i/>. In this paper, we aim to demonstrate a new way of using stellar atmosphere models for a joint interpretation of spectroscopic and interferometric observations.<i>Methods<i/>. Starting from a discrete grid of one-dimensional (1D) stellar atmosphere models, we developed a training algorithm, based on an artificial neural network, capable of estimating the spectrum and intensity profile of a star over a range of wavelengths and viewing angles. A minimisation algorithm based on the trained function allowed for the simultaneous fitting of the observational spectrum and interferometric complex visibilities. As a result, coherent and precise stellar parameters can be extracted.<i>Results<i/>. We show the ability of the trained function to match the modelled intensity profiles of stars in the effective temperature range of 4500–7000 K and surface gravity range of 3 to 5 dex, with a relative precision to the model that is better than 0.05%. Using simulated interferometric data and actual spectroscopic measurements, we demonstrated the performance of our algorithm on a sample of five benchmark stars. Using this method, we achieved an accuracy within 0.5% for the angular diameter, radius, and surface gravity, and within 20 K for the effective temperature.<i>Conclusions<i/>. This paper demonstrates a new method of using interferometric data combined with spectroscopic observations. This approach offers an improved determination of the radius, effective temperature, and surface gravity of stars.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202450105\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202450105","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

背景。由于最近在光学干涉测量领域取得的进展,仪器的灵敏度现在已经达到了专门用于系外行星和恒星研究的新太空任务领域所达到的水平。将干涉测量与其他观测方法相结合,可以确定恒星参数,并有助于提高我们对恒星物理学的理解。 本文旨在展示一种使用恒星大气模型来联合解释光谱和干涉测量观测结果的新方法。从离散的一维(1D)恒星大气模型网格开始,我们开发了一种基于人工神经网络的训练算法,该算法能够在一定波长和视角范围内估计恒星的光谱和强度曲线。基于训练函数的最小化算法可以同时拟合观测光谱和干涉测量复能见度。因此,可以提取出连贯而精确的恒星参数。我们展示了训练有素的函数在有效温度范围 4500-7000 K 和表面引力范围 3-5 dex 时与建模的恒星强度曲线相匹配的能力,与模型的相对精度优于 0.05%。利用模拟干涉测量数据和实际光谱测量结果,我们在五颗基准恒星样本上演示了我们算法的性能。利用这种方法,我们在角直径、半径和表面引力方面的精度达到了 0.5% 以内,在有效温度方面的精度达到了 20 K 以内。本文展示了一种结合光谱观测使用干涉测量数据的新方法。这种方法改进了对恒星半径、有效温度和表面引力的测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimised use of interferometry, spectroscopy, and stellar atmosphere models for determining the fundamental parameters of stars
Context. Thanks to recent progress in the field of optical interferometry, instrument sensitivities have now reached the level achieved in the domain of new space missions dedicated to exoplanet and stellar studies. Combining interferometry with other observational approaches enables the determination of stellar parameters and helps improve our understanding of stellar physics.Aims. In this paper, we aim to demonstrate a new way of using stellar atmosphere models for a joint interpretation of spectroscopic and interferometric observations.Methods. Starting from a discrete grid of one-dimensional (1D) stellar atmosphere models, we developed a training algorithm, based on an artificial neural network, capable of estimating the spectrum and intensity profile of a star over a range of wavelengths and viewing angles. A minimisation algorithm based on the trained function allowed for the simultaneous fitting of the observational spectrum and interferometric complex visibilities. As a result, coherent and precise stellar parameters can be extracted.Results. We show the ability of the trained function to match the modelled intensity profiles of stars in the effective temperature range of 4500–7000 K and surface gravity range of 3 to 5 dex, with a relative precision to the model that is better than 0.05%. Using simulated interferometric data and actual spectroscopic measurements, we demonstrated the performance of our algorithm on a sample of five benchmark stars. Using this method, we achieved an accuracy within 0.5% for the angular diameter, radius, and surface gravity, and within 20 K for the effective temperature.Conclusions. This paper demonstrates a new method of using interferometric data combined with spectroscopic observations. This approach offers an improved determination of the radius, effective temperature, and surface gravity of stars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1