Donatella Gubiani, Giovanni Sgrazzutti, Massimiliano Basso, Elena Viero, Denis Tavaris, Gian Luca Foresti, Ivan Scagnetto
{"title":"在覆盖大面积区域的高光谱图像中识别石棉屋顶的动态神经网络模型","authors":"Donatella Gubiani, Giovanni Sgrazzutti, Massimiliano Basso, Elena Viero, Denis Tavaris, Gian Luca Foresti, Ivan Scagnetto","doi":"10.1111/mice.13376","DOIUrl":null,"url":null,"abstract":"Asbestos has been used extensively in several applications. Once it is known as a dangerous mineral, its usage has been prohibited and its identification and remediation play a very important role from the health safety point of view. Nowadays, deep learning techniques are used in many applications, especially for image analysis. They can be used to significantly reduce the time and cost of traditional detection methods. In this paper, taking advantage of asbestos spectral signature, a deep neural network is introduced in order to implement a complete methodology to identify asbestos roofings starting from hyperspectral images in a regional context. The novelty of the proposed approach is a dynamic mixing of models with different features, in order to accommodate classifications on widespread areas of both urban and rural territories. Indeed, the dataset used during the experiments described in this paper is a large one, consisting of many wide hyperspectral images with a geometric resolution of 1 m and with 186 bands, covering an entire region of approximately 8,000 <span data-altimg=\"/cms/asset/050068ec-5413-4a29-bb86-5a80bb52ff3f/mice13376-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"17\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/mice13376-math-0001.png\"><mjx-semantics><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"k m squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.421em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:10939687:media:mice13376:mice13376-math-0001\" display=\"inline\" location=\"graphic/mice13376-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"k m squared\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">km</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup>${\\rm km}^2$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. This is in contrast to other works in the literature where the analyzed areas are limited in size and uniform for physical features.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"35 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamic neural network model for the identification of asbestos roofings in hyperspectral images covering a large regional area\",\"authors\":\"Donatella Gubiani, Giovanni Sgrazzutti, Massimiliano Basso, Elena Viero, Denis Tavaris, Gian Luca Foresti, Ivan Scagnetto\",\"doi\":\"10.1111/mice.13376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asbestos has been used extensively in several applications. Once it is known as a dangerous mineral, its usage has been prohibited and its identification and remediation play a very important role from the health safety point of view. Nowadays, deep learning techniques are used in many applications, especially for image analysis. They can be used to significantly reduce the time and cost of traditional detection methods. In this paper, taking advantage of asbestos spectral signature, a deep neural network is introduced in order to implement a complete methodology to identify asbestos roofings starting from hyperspectral images in a regional context. The novelty of the proposed approach is a dynamic mixing of models with different features, in order to accommodate classifications on widespread areas of both urban and rural territories. Indeed, the dataset used during the experiments described in this paper is a large one, consisting of many wide hyperspectral images with a geometric resolution of 1 m and with 186 bands, covering an entire region of approximately 8,000 <span data-altimg=\\\"/cms/asset/050068ec-5413-4a29-bb86-5a80bb52ff3f/mice13376-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"17\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/mice13376-math-0001.png\\\"><mjx-semantics><mjx-msup data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"k m squared\\\" data-semantic-type=\\\"superscript\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.421em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:10939687:media:mice13376:mice13376-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/mice13376-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msup data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"k m squared\\\" data-semantic-type=\\\"superscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">km</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msup>${\\\\rm km}^2$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. This is in contrast to other works in the literature where the analyzed areas are limited in size and uniform for physical features.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13376\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13376","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A dynamic neural network model for the identification of asbestos roofings in hyperspectral images covering a large regional area
Asbestos has been used extensively in several applications. Once it is known as a dangerous mineral, its usage has been prohibited and its identification and remediation play a very important role from the health safety point of view. Nowadays, deep learning techniques are used in many applications, especially for image analysis. They can be used to significantly reduce the time and cost of traditional detection methods. In this paper, taking advantage of asbestos spectral signature, a deep neural network is introduced in order to implement a complete methodology to identify asbestos roofings starting from hyperspectral images in a regional context. The novelty of the proposed approach is a dynamic mixing of models with different features, in order to accommodate classifications on widespread areas of both urban and rural territories. Indeed, the dataset used during the experiments described in this paper is a large one, consisting of many wide hyperspectral images with a geometric resolution of 1 m and with 186 bands, covering an entire region of approximately 8,000 . This is in contrast to other works in the literature where the analyzed areas are limited in size and uniform for physical features.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.