{"title":"通过张量爱因斯坦积实现稳健的多通道去相关性","authors":"Shih-Yu Chang;Hsiao-Chun Wu;Guannan Liu","doi":"10.1109/TSP.2024.3495552","DOIUrl":null,"url":null,"abstract":"Decorrelation of multichannel signals has played a crucial preprocessing role (in prewhitening and orthogonalization) for many signal processing applications. Classical decorrelation techniques can only be applied for signal vectors. Nonetheless, many emerging big-data and sensor-network applications involve signal tensors (signal samples required to be arranged in a tensor form of arbitrary orders). Meanwhile, the existing tensor-decorrelation methods have serious limitations. First, the correlation-tensors have to be of certain particular orders. Second, the unrealistic assumption of the specific signal-tensor form, namely the canonical polyadic (CP) form, is made. Third, the correlation-tensor has to be full-rank or an extra preprocessor based on principal component analysis is required for any non-full-rank correlation tensor. To remove the aforementioned impractical limitations, we propose a novel robust approach for high-dimensional multichannel decorrelation, which can accommodate signal tensors of arbitrary orders, forms, and ranks without any need of extra preprocessor. In this work, we introduce two new tensor-decorrelation algorithms. Our first new algorithm is designed to tackle full-rank correlation-tensors and our second new algorithm is designed to tackle non-full-rank correlation-tensors. Meanwhile, we also propose a new parallel-computing paradigm to accelerate our proposed new tensor-decorrelation algorithms. To demonstrate the applicability of our proposed new scheme, we also apply our proposed new tensor-decorrelation approach to pre-whiten the tensor signals and analyze the corresponding convergence-speed and misadjustment performances of the tensor least-mean-squares (TLMS) filter. Finally, we assess the computational- and memory-complexities of our proposed new algorithms by simulations over both artificial and real data. Simulation results show that our proposed new multichannel-decorrelation algorithms outperform the existing tensor-decorrelation methods in terms of convergence speed, eigenspread, normalized mean square error (NRMSE), and estimation accuracy.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"275-291"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Multichannel Decorrelation via Tensor Einstein Product\",\"authors\":\"Shih-Yu Chang;Hsiao-Chun Wu;Guannan Liu\",\"doi\":\"10.1109/TSP.2024.3495552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decorrelation of multichannel signals has played a crucial preprocessing role (in prewhitening and orthogonalization) for many signal processing applications. Classical decorrelation techniques can only be applied for signal vectors. Nonetheless, many emerging big-data and sensor-network applications involve signal tensors (signal samples required to be arranged in a tensor form of arbitrary orders). Meanwhile, the existing tensor-decorrelation methods have serious limitations. First, the correlation-tensors have to be of certain particular orders. Second, the unrealistic assumption of the specific signal-tensor form, namely the canonical polyadic (CP) form, is made. Third, the correlation-tensor has to be full-rank or an extra preprocessor based on principal component analysis is required for any non-full-rank correlation tensor. To remove the aforementioned impractical limitations, we propose a novel robust approach for high-dimensional multichannel decorrelation, which can accommodate signal tensors of arbitrary orders, forms, and ranks without any need of extra preprocessor. In this work, we introduce two new tensor-decorrelation algorithms. Our first new algorithm is designed to tackle full-rank correlation-tensors and our second new algorithm is designed to tackle non-full-rank correlation-tensors. Meanwhile, we also propose a new parallel-computing paradigm to accelerate our proposed new tensor-decorrelation algorithms. To demonstrate the applicability of our proposed new scheme, we also apply our proposed new tensor-decorrelation approach to pre-whiten the tensor signals and analyze the corresponding convergence-speed and misadjustment performances of the tensor least-mean-squares (TLMS) filter. Finally, we assess the computational- and memory-complexities of our proposed new algorithms by simulations over both artificial and real data. Simulation results show that our proposed new multichannel-decorrelation algorithms outperform the existing tensor-decorrelation methods in terms of convergence speed, eigenspread, normalized mean square error (NRMSE), and estimation accuracy.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"275-291\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752411/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10752411/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Robust Multichannel Decorrelation via Tensor Einstein Product
Decorrelation of multichannel signals has played a crucial preprocessing role (in prewhitening and orthogonalization) for many signal processing applications. Classical decorrelation techniques can only be applied for signal vectors. Nonetheless, many emerging big-data and sensor-network applications involve signal tensors (signal samples required to be arranged in a tensor form of arbitrary orders). Meanwhile, the existing tensor-decorrelation methods have serious limitations. First, the correlation-tensors have to be of certain particular orders. Second, the unrealistic assumption of the specific signal-tensor form, namely the canonical polyadic (CP) form, is made. Third, the correlation-tensor has to be full-rank or an extra preprocessor based on principal component analysis is required for any non-full-rank correlation tensor. To remove the aforementioned impractical limitations, we propose a novel robust approach for high-dimensional multichannel decorrelation, which can accommodate signal tensors of arbitrary orders, forms, and ranks without any need of extra preprocessor. In this work, we introduce two new tensor-decorrelation algorithms. Our first new algorithm is designed to tackle full-rank correlation-tensors and our second new algorithm is designed to tackle non-full-rank correlation-tensors. Meanwhile, we also propose a new parallel-computing paradigm to accelerate our proposed new tensor-decorrelation algorithms. To demonstrate the applicability of our proposed new scheme, we also apply our proposed new tensor-decorrelation approach to pre-whiten the tensor signals and analyze the corresponding convergence-speed and misadjustment performances of the tensor least-mean-squares (TLMS) filter. Finally, we assess the computational- and memory-complexities of our proposed new algorithms by simulations over both artificial and real data. Simulation results show that our proposed new multichannel-decorrelation algorithms outperform the existing tensor-decorrelation methods in terms of convergence speed, eigenspread, normalized mean square error (NRMSE), and estimation accuracy.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.