梯度网络

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal Processing Pub Date : 2024-11-13 DOI:10.1109/TSP.2024.3496692
Shreyas Chaudhari;Srinivasa Pranav;José M.F. Moura
{"title":"梯度网络","authors":"Shreyas Chaudhari;Srinivasa Pranav;José M.F. Moura","doi":"10.1109/TSP.2024.3496692","DOIUrl":null,"url":null,"abstract":"Directly parameterizing and learning gradients of functions has widespread significance, with specific applications in inverse problems, generative modeling, and optimal transport. This paper introduces gradient networks (\n<monospace>GradNets</monospace>\n): novel neural network architectures that parameterize gradients of various function classes. \n<monospace>GradNets</monospace>\n exhibit specialized architectural constraints that ensure correspondence to gradient functions. We provide a comprehensive \n<monospace>GradNet</monospace>\n design framework that includes methods for transforming \n<monospace>GradNets</monospace>\n into monotone gradient networks (\n<monospace>mGradNets</monospace>\n), which are guaranteed to represent gradients of convex functions. Our results establish that our proposed \n<monospace>GradNet</monospace>\n (and \n<monospace>mGradNet</monospace>\n) universally approximate the gradients of (convex) functions. Furthermore, these networks can be customized to correspond to specific spaces of potential functions, including transformed sums of (convex) ridge functions. Our analysis leads to two distinct \n<monospace>GradNet</monospace>\n architectures, \n<monospace>GradNet-C</monospace>\n and \n<monospace>GradNet-M</monospace>\n, and we describe the corresponding monotone versions, \n<monospace>mGradNet-C</monospace>\n and \n<monospace>mGradNet-M</monospace>\n. Our empirical results demonstrate that these architectures provide efficient parameterizations and outperform existing methods by up to 15 dB in gradient field tasks and by up to 11 dB in Hamiltonian dynamics learning tasks.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"324-339"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient Networks\",\"authors\":\"Shreyas Chaudhari;Srinivasa Pranav;José M.F. Moura\",\"doi\":\"10.1109/TSP.2024.3496692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directly parameterizing and learning gradients of functions has widespread significance, with specific applications in inverse problems, generative modeling, and optimal transport. This paper introduces gradient networks (\\n<monospace>GradNets</monospace>\\n): novel neural network architectures that parameterize gradients of various function classes. \\n<monospace>GradNets</monospace>\\n exhibit specialized architectural constraints that ensure correspondence to gradient functions. We provide a comprehensive \\n<monospace>GradNet</monospace>\\n design framework that includes methods for transforming \\n<monospace>GradNets</monospace>\\n into monotone gradient networks (\\n<monospace>mGradNets</monospace>\\n), which are guaranteed to represent gradients of convex functions. Our results establish that our proposed \\n<monospace>GradNet</monospace>\\n (and \\n<monospace>mGradNet</monospace>\\n) universally approximate the gradients of (convex) functions. Furthermore, these networks can be customized to correspond to specific spaces of potential functions, including transformed sums of (convex) ridge functions. Our analysis leads to two distinct \\n<monospace>GradNet</monospace>\\n architectures, \\n<monospace>GradNet-C</monospace>\\n and \\n<monospace>GradNet-M</monospace>\\n, and we describe the corresponding monotone versions, \\n<monospace>mGradNet-C</monospace>\\n and \\n<monospace>mGradNet-M</monospace>\\n. Our empirical results demonstrate that these architectures provide efficient parameterizations and outperform existing methods by up to 15 dB in gradient field tasks and by up to 11 dB in Hamiltonian dynamics learning tasks.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"324-339\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752831/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10752831/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

函数梯度的直接参数化和学习具有广泛的意义,在反问题、生成建模和最优运输中具有特定的应用。本文介绍了梯度网络(GradNets):一种新的神经网络结构,它可以参数化各种函数类的梯度。GradNets展示了专门的架构约束,以确保与梯度函数的对应。我们提供了一个全面的GradNet设计框架,其中包括将GradNet转换为单调梯度网络(mGradNets)的方法,这些方法保证表示凸函数的梯度。我们的结果表明,我们提出的GradNet(和mGradNet)普遍近似(凸)函数的梯度。此外,这些网络可以定制以对应于特定的势函数空间,包括(凸)脊函数的变换和。我们的分析导致了两个不同的GradNet架构,GradNet- c和GradNet- m,我们描述了相应的单调版本,mGradNet-C和mGradNet-M。我们的实证结果表明,这些架构提供了有效的参数化,并且在梯度场任务中优于现有方法高达15 dB,在哈密顿动力学学习任务中优于现有方法高达11 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient Networks
Directly parameterizing and learning gradients of functions has widespread significance, with specific applications in inverse problems, generative modeling, and optimal transport. This paper introduces gradient networks ( GradNets ): novel neural network architectures that parameterize gradients of various function classes. GradNets exhibit specialized architectural constraints that ensure correspondence to gradient functions. We provide a comprehensive GradNet design framework that includes methods for transforming GradNets into monotone gradient networks ( mGradNets ), which are guaranteed to represent gradients of convex functions. Our results establish that our proposed GradNet (and mGradNet ) universally approximate the gradients of (convex) functions. Furthermore, these networks can be customized to correspond to specific spaces of potential functions, including transformed sums of (convex) ridge functions. Our analysis leads to two distinct GradNet architectures, GradNet-C and GradNet-M , and we describe the corresponding monotone versions, mGradNet-C and mGradNet-M . Our empirical results demonstrate that these architectures provide efficient parameterizations and outperform existing methods by up to 15 dB in gradient field tasks and by up to 11 dB in Hamiltonian dynamics learning tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
期刊最新文献
A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent Tracking Multiple Resolvable Group Targets with Coordinated Motion via Labeled Random Finite Sets Energy-Efficient Flat Precoding for MIMO Systems Successive Refinement in Large-Scale Computation: Expediting Model Inference Applications ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1