Jia Niu , Yuyu Wan , Zhe Ma , Weihong Dong , Xiaosi Su , Yuanzheng Zhai , Xiaofang Shen , Xiaokun Yi
{"title":"含磁铁矿河岸带天然有机化合物典型成分对硝酸盐还原作用的比较分析。","authors":"Jia Niu , Yuyu Wan , Zhe Ma , Weihong Dong , Xiaosi Su , Yuanzheng Zhai , Xiaofang Shen , Xiaokun Yi","doi":"10.1016/j.ecoenv.2024.117298","DOIUrl":null,"url":null,"abstract":"<div><div>As the key interface, the nitrate removal capacity of riparian zones is receiving close attention. Although naturally occurring organic compounds in this environment play a pivotal role in shaping microbial communities and influencing the nitrate removal capacity, the relevant research is inadequate. Given the complexity of riparian environments, in this study, we added representative natural organic matter (fulvic acid, butyric acid, naphthalene, starch, and sodium bicarbonate) as carbon conditions and incorporated magnetite to simulate riparian zone components. The study investigated the nitrate degradation efficiency and microbial responses under different natural carbon conditions in real iron-containing environments. Butyric acid exhibited the most efficient nitrate reduction, followed in descending order by naphthalene, starch, sodium bicarbonate, and humic acid. However, this did not imply that butyric acid efficiently removed nitrogen; instead, the nitrogen would circulate in the environment in the form of ammonium. Denitrification and DNRA were the primary drivers of nitrate reduction in each system, while naphthalene and humic acid systems also exhibited nitrification and mineralization. Nitrogen-fixing bacteria represent a unique microbial community in the butyrate system. Further, the synergistic degradation of naphthalene and nitrate demonstrated significant potential applications. High-throughput sequencing revealed that carbon conditions exerted selective pressure on microorganisms, driving Fe (Ⅱ)/Fe (Ⅲ) transformation by shaping the microbial community structure and influencing the nitrogen cycling process.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"287 ","pages":"Article 117298"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative impact analysis of nitrate reduction by typical components of natural organic compounds in magnetite-bearing riparian zones\",\"authors\":\"Jia Niu , Yuyu Wan , Zhe Ma , Weihong Dong , Xiaosi Su , Yuanzheng Zhai , Xiaofang Shen , Xiaokun Yi\",\"doi\":\"10.1016/j.ecoenv.2024.117298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As the key interface, the nitrate removal capacity of riparian zones is receiving close attention. Although naturally occurring organic compounds in this environment play a pivotal role in shaping microbial communities and influencing the nitrate removal capacity, the relevant research is inadequate. Given the complexity of riparian environments, in this study, we added representative natural organic matter (fulvic acid, butyric acid, naphthalene, starch, and sodium bicarbonate) as carbon conditions and incorporated magnetite to simulate riparian zone components. The study investigated the nitrate degradation efficiency and microbial responses under different natural carbon conditions in real iron-containing environments. Butyric acid exhibited the most efficient nitrate reduction, followed in descending order by naphthalene, starch, sodium bicarbonate, and humic acid. However, this did not imply that butyric acid efficiently removed nitrogen; instead, the nitrogen would circulate in the environment in the form of ammonium. Denitrification and DNRA were the primary drivers of nitrate reduction in each system, while naphthalene and humic acid systems also exhibited nitrification and mineralization. Nitrogen-fixing bacteria represent a unique microbial community in the butyrate system. Further, the synergistic degradation of naphthalene and nitrate demonstrated significant potential applications. High-throughput sequencing revealed that carbon conditions exerted selective pressure on microorganisms, driving Fe (Ⅱ)/Fe (Ⅲ) transformation by shaping the microbial community structure and influencing the nitrogen cycling process.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"287 \",\"pages\":\"Article 117298\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324013745\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324013745","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Comparative impact analysis of nitrate reduction by typical components of natural organic compounds in magnetite-bearing riparian zones
As the key interface, the nitrate removal capacity of riparian zones is receiving close attention. Although naturally occurring organic compounds in this environment play a pivotal role in shaping microbial communities and influencing the nitrate removal capacity, the relevant research is inadequate. Given the complexity of riparian environments, in this study, we added representative natural organic matter (fulvic acid, butyric acid, naphthalene, starch, and sodium bicarbonate) as carbon conditions and incorporated magnetite to simulate riparian zone components. The study investigated the nitrate degradation efficiency and microbial responses under different natural carbon conditions in real iron-containing environments. Butyric acid exhibited the most efficient nitrate reduction, followed in descending order by naphthalene, starch, sodium bicarbonate, and humic acid. However, this did not imply that butyric acid efficiently removed nitrogen; instead, the nitrogen would circulate in the environment in the form of ammonium. Denitrification and DNRA were the primary drivers of nitrate reduction in each system, while naphthalene and humic acid systems also exhibited nitrification and mineralization. Nitrogen-fixing bacteria represent a unique microbial community in the butyrate system. Further, the synergistic degradation of naphthalene and nitrate demonstrated significant potential applications. High-throughput sequencing revealed that carbon conditions exerted selective pressure on microorganisms, driving Fe (Ⅱ)/Fe (Ⅲ) transformation by shaping the microbial community structure and influencing the nitrogen cycling process.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.