{"title":"解密生物滤池中的anammox系统死区。","authors":"Yanjun Zhu , Dong Li , Jie Zhang","doi":"10.1016/j.biortech.2024.131784","DOIUrl":null,"url":null,"abstract":"<div><div>In an anammox biofilm reactor, long-term operation inevitably leads to the repeated formation of localized dead zones. Once these dead zones (DZs) occur, the anammox reactor’s nitrogen removal efficiency is severely reduced. However, the mechanisms and intrinsic reasons for the transformation of DZs remain unexplored. In this study, the pilot-scale biofilters were classified into biologically active zones (BZs), transition zones (TZs), and DZs. The results indicated that microbial communities undergo accelerated succession from the TZ. Biofilms respond to environmental stress from the DZs by altering the levels of signaling molecules, triggering a series of cascading reactions. These reactions alter the abundance of genes involved in nitrogen removal, promote substance transformation, and speed up the succession of microbial communities. This study demonstrates the objectives and self-healing mechanisms of the anammox biofilm process in the presence of dead zones, which could support the long-term application of anammox technology.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131784"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the dead zone on anammox system in biofilters\",\"authors\":\"Yanjun Zhu , Dong Li , Jie Zhang\",\"doi\":\"10.1016/j.biortech.2024.131784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In an anammox biofilm reactor, long-term operation inevitably leads to the repeated formation of localized dead zones. Once these dead zones (DZs) occur, the anammox reactor’s nitrogen removal efficiency is severely reduced. However, the mechanisms and intrinsic reasons for the transformation of DZs remain unexplored. In this study, the pilot-scale biofilters were classified into biologically active zones (BZs), transition zones (TZs), and DZs. The results indicated that microbial communities undergo accelerated succession from the TZ. Biofilms respond to environmental stress from the DZs by altering the levels of signaling molecules, triggering a series of cascading reactions. These reactions alter the abundance of genes involved in nitrogen removal, promote substance transformation, and speed up the succession of microbial communities. This study demonstrates the objectives and self-healing mechanisms of the anammox biofilm process in the presence of dead zones, which could support the long-term application of anammox technology.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"416 \",\"pages\":\"Article 131784\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852424014883\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424014883","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Deciphering the dead zone on anammox system in biofilters
In an anammox biofilm reactor, long-term operation inevitably leads to the repeated formation of localized dead zones. Once these dead zones (DZs) occur, the anammox reactor’s nitrogen removal efficiency is severely reduced. However, the mechanisms and intrinsic reasons for the transformation of DZs remain unexplored. In this study, the pilot-scale biofilters were classified into biologically active zones (BZs), transition zones (TZs), and DZs. The results indicated that microbial communities undergo accelerated succession from the TZ. Biofilms respond to environmental stress from the DZs by altering the levels of signaling molecules, triggering a series of cascading reactions. These reactions alter the abundance of genes involved in nitrogen removal, promote substance transformation, and speed up the succession of microbial communities. This study demonstrates the objectives and self-healing mechanisms of the anammox biofilm process in the presence of dead zones, which could support the long-term application of anammox technology.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.