基于图学习的机器学习改进了商业级海洋微藻 Porphyridium 的预测和培育。

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2024-11-07 DOI:10.1016/j.biortech.2024.131728
Huankai Li, Leijian Chen, Feng Zhang, Zongwei Cai
{"title":"基于图学习的机器学习改进了商业级海洋微藻 Porphyridium 的预测和培育。","authors":"Huankai Li,&nbsp;Leijian Chen,&nbsp;Feng Zhang,&nbsp;Zongwei Cai","doi":"10.1016/j.biortech.2024.131728","DOIUrl":null,"url":null,"abstract":"<div><div>A graph learning [Binarized Attributed Network Embedding (BANE)] model enhances the single-target and multi-target prediction performances of random forest and eXtreme Gradient Boosting (XGBoost) by learning complex interrelationships between cultivation parameters of <em>Porphyridium</em>. The BANE-XGBoost has the best prediction performance (train R<sup>2</sup> &gt; 0.96 and test R<sup>2</sup> &gt; 0.87). Based on Shapley Additive Explanation (SHAP) model, illumination intensity, culture time, and KH<sub>2</sub>PO<sub>4</sub> are the most critical factors for <em>Porphyridium</em> growth. The combined facilitating roles of cultivation parameters are found using the SHAP value-based heat map and group. To reach high biomass and daily production rate concurrently, one-way and two-way partial dependent plots models find the optimal conditions. The top 2 critical parameters (illumination intensity and KH<sub>2</sub>PO<sub>4</sub>) were selected to verify using the graphical user interface website based on the optimized model and lab experiments, respectively. This study shows the<!--> <!-->graph-learning-based model can improve prediction performance and optimize intricate low-carbon microalgal cultivation.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131728"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-learning-based machine learning improves prediction and cultivation of commercial-grade marine microalgae Porphyridium\",\"authors\":\"Huankai Li,&nbsp;Leijian Chen,&nbsp;Feng Zhang,&nbsp;Zongwei Cai\",\"doi\":\"10.1016/j.biortech.2024.131728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph learning [Binarized Attributed Network Embedding (BANE)] model enhances the single-target and multi-target prediction performances of random forest and eXtreme Gradient Boosting (XGBoost) by learning complex interrelationships between cultivation parameters of <em>Porphyridium</em>. The BANE-XGBoost has the best prediction performance (train R<sup>2</sup> &gt; 0.96 and test R<sup>2</sup> &gt; 0.87). Based on Shapley Additive Explanation (SHAP) model, illumination intensity, culture time, and KH<sub>2</sub>PO<sub>4</sub> are the most critical factors for <em>Porphyridium</em> growth. The combined facilitating roles of cultivation parameters are found using the SHAP value-based heat map and group. To reach high biomass and daily production rate concurrently, one-way and two-way partial dependent plots models find the optimal conditions. The top 2 critical parameters (illumination intensity and KH<sub>2</sub>PO<sub>4</sub>) were selected to verify using the graphical user interface website based on the optimized model and lab experiments, respectively. This study shows the<!--> <!-->graph-learning-based model can improve prediction performance and optimize intricate low-carbon microalgal cultivation.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"416 \",\"pages\":\"Article 131728\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852424014329\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424014329","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

图学习[二值化属性网络嵌入(BANE)]模型通过学习卟啉草栽培参数之间复杂的相互关系,提高了随机森林和梯度提升(XGBoost)的单目标和多目标预测性能。BANE-XGBoost 的预测性能最佳(训练 R2 > 0.96,测试 R2 > 0.87)。根据 Shapley Additive Explanation(SHAP)模型,光照强度、培养时间和 KH2PO4 是影响卟啉生长的最关键因素。利用基于 SHAP 值的热图和分组,可以发现培养参数的综合促进作用。为了同时达到高生物量和高日产量,单向和双向部分因果图模型找到了最佳条件。根据优化模型和实验室实验,分别选择了前两个关键参数(光照强度和 KH2PO4)通过图形用户界面网站进行验证。这项研究表明,基于图形学习的模型可以提高预测性能,优化错综复杂的低碳微藻栽培。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph-learning-based machine learning improves prediction and cultivation of commercial-grade marine microalgae Porphyridium
A graph learning [Binarized Attributed Network Embedding (BANE)] model enhances the single-target and multi-target prediction performances of random forest and eXtreme Gradient Boosting (XGBoost) by learning complex interrelationships between cultivation parameters of Porphyridium. The BANE-XGBoost has the best prediction performance (train R2 > 0.96 and test R2 > 0.87). Based on Shapley Additive Explanation (SHAP) model, illumination intensity, culture time, and KH2PO4 are the most critical factors for Porphyridium growth. The combined facilitating roles of cultivation parameters are found using the SHAP value-based heat map and group. To reach high biomass and daily production rate concurrently, one-way and two-way partial dependent plots models find the optimal conditions. The top 2 critical parameters (illumination intensity and KH2PO4) were selected to verify using the graphical user interface website based on the optimized model and lab experiments, respectively. This study shows the graph-learning-based model can improve prediction performance and optimize intricate low-carbon microalgal cultivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Biodiesel production, calcium recovery, and adsorbent synthesis using dairy sludge. Improved biohydrogen production using Ni/ZrxCeyO2 loaded on foam reactor through steam gasification of sewage sludge. Selective phthalate removal by molecularly imprinted biomass carbon modified electro-Fenton cathode. Pretreated sugarcane bagasse matches performance of synthetic media for lipid production with Yarrowia lipolytica. A novel approach for optimisation of bioenergy supply Chain: Integrating mathematical Programming, geographic Information System, and Analytic Hierarchy process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1