Zhenqiang Zhao , Jiajia You , Xuanping Shi , Mengmeng Cai , Rongshuai Zhu , Fengyu Yang , Meijuan Xu , Minglong Shao , Rongzhen Zhang , Youxi Zhao , Zhiming Rao
{"title":"多模块工程学指导高效 L-苏氨酸生产细胞工厂的开发。","authors":"Zhenqiang Zhao , Jiajia You , Xuanping Shi , Mengmeng Cai , Rongshuai Zhu , Fengyu Yang , Meijuan Xu , Minglong Shao , Rongzhen Zhang , Youxi Zhao , Zhiming Rao","doi":"10.1016/j.biortech.2024.131802","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid development of high-productivity strains is fundamental for bio-manufacture in industry. Here, Multi-module metabolic engineering was implemented to reprogram <em>Escherichia coli</em>, enabling it to rapidly transitioning from zero-producer to hyperproducer of L-threonine. Firstly, the synthesis pathway of L-threonine was rationally divided into five modules, and the rapid production of L-threonine was achieved by optimizing the expression of genes in each module. Subsequently, the capture and fixation of CO<sub>2</sub> was enhanced to improve L-threonine yield. Dynamically balancing cell growth and yield by quorum-sensing system resulted in the accumulation of L-threonine up to 34.24 g/L. Ultimately, the THR36-L19 strain accumulated 120.1 g/L L-threonine with 0.425 g/g glucose in a 5 L bioreactor. This is the highest yield for <em>de novo</em> producing L-threonine reported to date and without the use of exogenous inducers and antibiotics in the fermentation process. It also provided an effective technological guidence for the zero-to-overproduction of other chemicals.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131802"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-module engineering to guide the development of an efficient L-threonine-producing cell factory\",\"authors\":\"Zhenqiang Zhao , Jiajia You , Xuanping Shi , Mengmeng Cai , Rongshuai Zhu , Fengyu Yang , Meijuan Xu , Minglong Shao , Rongzhen Zhang , Youxi Zhao , Zhiming Rao\",\"doi\":\"10.1016/j.biortech.2024.131802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid development of high-productivity strains is fundamental for bio-manufacture in industry. Here, Multi-module metabolic engineering was implemented to reprogram <em>Escherichia coli</em>, enabling it to rapidly transitioning from zero-producer to hyperproducer of L-threonine. Firstly, the synthesis pathway of L-threonine was rationally divided into five modules, and the rapid production of L-threonine was achieved by optimizing the expression of genes in each module. Subsequently, the capture and fixation of CO<sub>2</sub> was enhanced to improve L-threonine yield. Dynamically balancing cell growth and yield by quorum-sensing system resulted in the accumulation of L-threonine up to 34.24 g/L. Ultimately, the THR36-L19 strain accumulated 120.1 g/L L-threonine with 0.425 g/g glucose in a 5 L bioreactor. This is the highest yield for <em>de novo</em> producing L-threonine reported to date and without the use of exogenous inducers and antibiotics in the fermentation process. It also provided an effective technological guidence for the zero-to-overproduction of other chemicals.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"416 \",\"pages\":\"Article 131802\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852424015062\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424015062","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Multi-module engineering to guide the development of an efficient L-threonine-producing cell factory
The rapid development of high-productivity strains is fundamental for bio-manufacture in industry. Here, Multi-module metabolic engineering was implemented to reprogram Escherichia coli, enabling it to rapidly transitioning from zero-producer to hyperproducer of L-threonine. Firstly, the synthesis pathway of L-threonine was rationally divided into five modules, and the rapid production of L-threonine was achieved by optimizing the expression of genes in each module. Subsequently, the capture and fixation of CO2 was enhanced to improve L-threonine yield. Dynamically balancing cell growth and yield by quorum-sensing system resulted in the accumulation of L-threonine up to 34.24 g/L. Ultimately, the THR36-L19 strain accumulated 120.1 g/L L-threonine with 0.425 g/g glucose in a 5 L bioreactor. This is the highest yield for de novo producing L-threonine reported to date and without the use of exogenous inducers and antibiotics in the fermentation process. It also provided an effective technological guidence for the zero-to-overproduction of other chemicals.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.