多模块工程学指导高效 L-苏氨酸生产细胞工厂的开发。

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2024-11-12 DOI:10.1016/j.biortech.2024.131802
Zhenqiang Zhao , Jiajia You , Xuanping Shi , Mengmeng Cai , Rongshuai Zhu , Fengyu Yang , Meijuan Xu , Minglong Shao , Rongzhen Zhang , Youxi Zhao , Zhiming Rao
{"title":"多模块工程学指导高效 L-苏氨酸生产细胞工厂的开发。","authors":"Zhenqiang Zhao ,&nbsp;Jiajia You ,&nbsp;Xuanping Shi ,&nbsp;Mengmeng Cai ,&nbsp;Rongshuai Zhu ,&nbsp;Fengyu Yang ,&nbsp;Meijuan Xu ,&nbsp;Minglong Shao ,&nbsp;Rongzhen Zhang ,&nbsp;Youxi Zhao ,&nbsp;Zhiming Rao","doi":"10.1016/j.biortech.2024.131802","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid development of high-productivity strains is fundamental for bio-manufacture in industry. Here, Multi-module metabolic engineering was implemented to reprogram <em>Escherichia coli</em>, enabling it to rapidly transitioning from zero-producer to hyperproducer of L-threonine. Firstly, the synthesis pathway of L-threonine was rationally divided into five modules, and the rapid production of L-threonine was achieved by optimizing the expression of genes in each module. Subsequently, the capture and fixation of CO<sub>2</sub> was enhanced to improve L-threonine yield. Dynamically balancing cell growth and yield by quorum-sensing system resulted in the accumulation of L-threonine up to 34.24 g/L. Ultimately, the THR36-L19 strain accumulated 120.1 g/L L-threonine with 0.425 g/g glucose in a 5 L bioreactor. This is the highest yield for <em>de novo</em> producing L-threonine reported to date and without the use of exogenous inducers and antibiotics in the fermentation process. It also provided an effective technological guidence for the zero-to-overproduction of other chemicals.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131802"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-module engineering to guide the development of an efficient L-threonine-producing cell factory\",\"authors\":\"Zhenqiang Zhao ,&nbsp;Jiajia You ,&nbsp;Xuanping Shi ,&nbsp;Mengmeng Cai ,&nbsp;Rongshuai Zhu ,&nbsp;Fengyu Yang ,&nbsp;Meijuan Xu ,&nbsp;Minglong Shao ,&nbsp;Rongzhen Zhang ,&nbsp;Youxi Zhao ,&nbsp;Zhiming Rao\",\"doi\":\"10.1016/j.biortech.2024.131802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid development of high-productivity strains is fundamental for bio-manufacture in industry. Here, Multi-module metabolic engineering was implemented to reprogram <em>Escherichia coli</em>, enabling it to rapidly transitioning from zero-producer to hyperproducer of L-threonine. Firstly, the synthesis pathway of L-threonine was rationally divided into five modules, and the rapid production of L-threonine was achieved by optimizing the expression of genes in each module. Subsequently, the capture and fixation of CO<sub>2</sub> was enhanced to improve L-threonine yield. Dynamically balancing cell growth and yield by quorum-sensing system resulted in the accumulation of L-threonine up to 34.24 g/L. Ultimately, the THR36-L19 strain accumulated 120.1 g/L L-threonine with 0.425 g/g glucose in a 5 L bioreactor. This is the highest yield for <em>de novo</em> producing L-threonine reported to date and without the use of exogenous inducers and antibiotics in the fermentation process. It also provided an effective technological guidence for the zero-to-overproduction of other chemicals.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"416 \",\"pages\":\"Article 131802\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852424015062\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424015062","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

快速开发高产菌株是工业生物制造的基础。在此,我们采用多模块代谢工程技术对大肠杆菌进行了重编程,使其能够从L-苏氨酸的零产量快速过渡到高产量。首先,将 L-苏氨酸的合成途径合理划分为五个模块,通过优化每个模块中基因的表达实现 L-苏氨酸的快速生产。随后,加强二氧化碳的捕获和固定,以提高 L-苏氨酸的产量。通过法定人数感应系统对细胞生长和产量进行动态平衡,使 L-苏氨酸的积累达到 34.24 克/升。最终,THR36-L19 菌株在 5 升生物反应器中积累了 120.1 克/升 L-苏氨酸和 0.425 克/克葡萄糖。这是迄今为止所报道的从头生产 L-苏氨酸的最高产量,而且在发酵过程中无需使用外源诱导剂和抗生素。它还为其他化学物质的零到过量生产提供了有效的技术指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-module engineering to guide the development of an efficient L-threonine-producing cell factory
The rapid development of high-productivity strains is fundamental for bio-manufacture in industry. Here, Multi-module metabolic engineering was implemented to reprogram Escherichia coli, enabling it to rapidly transitioning from zero-producer to hyperproducer of L-threonine. Firstly, the synthesis pathway of L-threonine was rationally divided into five modules, and the rapid production of L-threonine was achieved by optimizing the expression of genes in each module. Subsequently, the capture and fixation of CO2 was enhanced to improve L-threonine yield. Dynamically balancing cell growth and yield by quorum-sensing system resulted in the accumulation of L-threonine up to 34.24 g/L. Ultimately, the THR36-L19 strain accumulated 120.1 g/L L-threonine with 0.425 g/g glucose in a 5 L bioreactor. This is the highest yield for de novo producing L-threonine reported to date and without the use of exogenous inducers and antibiotics in the fermentation process. It also provided an effective technological guidence for the zero-to-overproduction of other chemicals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Biodiesel production, calcium recovery, and adsorbent synthesis using dairy sludge. Improved biohydrogen production using Ni/ZrxCeyO2 loaded on foam reactor through steam gasification of sewage sludge. Selective phthalate removal by molecularly imprinted biomass carbon modified electro-Fenton cathode. Pretreated sugarcane bagasse matches performance of synthetic media for lipid production with Yarrowia lipolytica. Comprehensive effects of biochar-assisted nitrogen and phosphorus bioremediation on hydrocarbon removal and microecological improvement in petroleum-contaminated soil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1