Youenn Launay, Iwan Jan, Vincent Ciesielski, Lydie Hue, Mélodie Succar, Léa Fret, Thomas Guerbette, Karima Begriche, Philippe Legrand, Daniel Catheline, Manuel Vlach, Vincent Rioux
{"title":"利用负化学电离 GC-MS 测量稳定同位素标记的脂肪酸的去饱和酶活性。","authors":"Youenn Launay, Iwan Jan, Vincent Ciesielski, Lydie Hue, Mélodie Succar, Léa Fret, Thomas Guerbette, Karima Begriche, Philippe Legrand, Daniel Catheline, Manuel Vlach, Vincent Rioux","doi":"10.1016/j.chemphyslip.2024.105451","DOIUrl":null,"url":null,"abstract":"<p><p>Fatty acid desaturases are key enzymes in lipid metabolism. They introduce double bonds between defined carbons of the fatty acyl chain and catalyze rate-limiting steps in the biosynthesis of polyunsaturated fatty acids. For decades, in vitro desaturase activities have been determined by using radiolabeled fatty acids as substrates, incubated with tissue or cell fractions containing membrane-bound desaturases. However, handling radioactivity is being increasingly complicated due to safety and regulatory concern. Radiolabeled fatty acids are also expensive and many of them are not commercially available. There is therefore a crucial need to develop new methods. Although methods using unlabeled fatty acids as substrates have recently been validated, they are well suited for large tissue samples and did not achieve the same sensitivity as the radioactive ones. Here, we show that negative chemical ionization GC-MS on stable isotope-labeled fatty acids, derivatized to pentafluorobenzyl esters, now offers this opportunity, because of its high sensitivity in the selected ion monitoring mode. By using this simple and affordable improved method, we measured the kinetic parameters of mouse liver Δ6-desaturase for its two main substrates (C18:2 n-6 and C18:3 n-3; 10-13 µM). Moreover, this method enabled to compare Δ5-desaturase apparent Km values (19-22 µM) for its two main substrates (C20:3 n-6 and C20:4 n-3). Finally, we re-evaluated the controversial effect of freezing on desaturase activities by using both frozen rat tissues and cryopreserved human hepatocytes. This safe, reliable and sensitive method may be applied to other enzymatic activities involving fatty acids (elongation, hydroxylation) in miniaturized samples.</p>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of stable isotope-labeled fatty acids to measure desaturase activities with negative chemical ionization GC-MS.\",\"authors\":\"Youenn Launay, Iwan Jan, Vincent Ciesielski, Lydie Hue, Mélodie Succar, Léa Fret, Thomas Guerbette, Karima Begriche, Philippe Legrand, Daniel Catheline, Manuel Vlach, Vincent Rioux\",\"doi\":\"10.1016/j.chemphyslip.2024.105451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fatty acid desaturases are key enzymes in lipid metabolism. They introduce double bonds between defined carbons of the fatty acyl chain and catalyze rate-limiting steps in the biosynthesis of polyunsaturated fatty acids. For decades, in vitro desaturase activities have been determined by using radiolabeled fatty acids as substrates, incubated with tissue or cell fractions containing membrane-bound desaturases. However, handling radioactivity is being increasingly complicated due to safety and regulatory concern. Radiolabeled fatty acids are also expensive and many of them are not commercially available. There is therefore a crucial need to develop new methods. Although methods using unlabeled fatty acids as substrates have recently been validated, they are well suited for large tissue samples and did not achieve the same sensitivity as the radioactive ones. Here, we show that negative chemical ionization GC-MS on stable isotope-labeled fatty acids, derivatized to pentafluorobenzyl esters, now offers this opportunity, because of its high sensitivity in the selected ion monitoring mode. By using this simple and affordable improved method, we measured the kinetic parameters of mouse liver Δ6-desaturase for its two main substrates (C18:2 n-6 and C18:3 n-3; 10-13 µM). Moreover, this method enabled to compare Δ5-desaturase apparent Km values (19-22 µM) for its two main substrates (C20:3 n-6 and C20:4 n-3). Finally, we re-evaluated the controversial effect of freezing on desaturase activities by using both frozen rat tissues and cryopreserved human hepatocytes. This safe, reliable and sensitive method may be applied to other enzymatic activities involving fatty acids (elongation, hydroxylation) in miniaturized samples.</p>\",\"PeriodicalId\":275,\"journal\":{\"name\":\"Chemistry and Physics of Lipids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Physics of Lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemphyslip.2024.105451\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.chemphyslip.2024.105451","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Use of stable isotope-labeled fatty acids to measure desaturase activities with negative chemical ionization GC-MS.
Fatty acid desaturases are key enzymes in lipid metabolism. They introduce double bonds between defined carbons of the fatty acyl chain and catalyze rate-limiting steps in the biosynthesis of polyunsaturated fatty acids. For decades, in vitro desaturase activities have been determined by using radiolabeled fatty acids as substrates, incubated with tissue or cell fractions containing membrane-bound desaturases. However, handling radioactivity is being increasingly complicated due to safety and regulatory concern. Radiolabeled fatty acids are also expensive and many of them are not commercially available. There is therefore a crucial need to develop new methods. Although methods using unlabeled fatty acids as substrates have recently been validated, they are well suited for large tissue samples and did not achieve the same sensitivity as the radioactive ones. Here, we show that negative chemical ionization GC-MS on stable isotope-labeled fatty acids, derivatized to pentafluorobenzyl esters, now offers this opportunity, because of its high sensitivity in the selected ion monitoring mode. By using this simple and affordable improved method, we measured the kinetic parameters of mouse liver Δ6-desaturase for its two main substrates (C18:2 n-6 and C18:3 n-3; 10-13 µM). Moreover, this method enabled to compare Δ5-desaturase apparent Km values (19-22 µM) for its two main substrates (C20:3 n-6 and C20:4 n-3). Finally, we re-evaluated the controversial effect of freezing on desaturase activities by using both frozen rat tissues and cryopreserved human hepatocytes. This safe, reliable and sensitive method may be applied to other enzymatic activities involving fatty acids (elongation, hydroxylation) in miniaturized samples.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.