不含双酚 A?探索双酚 A 替代品 BPS 和 BPF 对子宫内膜蜕膜的生殖毒性。

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2024-11-15 DOI:10.1016/j.ecoenv.2024.117275
Yao Xiong , Shaoyuan Xu , Ziwei Wang , Zihan Wang , Shuwei Li , Ming Zhang , Yuanzhen Zhang
{"title":"不含双酚 A?探索双酚 A 替代品 BPS 和 BPF 对子宫内膜蜕膜的生殖毒性。","authors":"Yao Xiong ,&nbsp;Shaoyuan Xu ,&nbsp;Ziwei Wang ,&nbsp;Zihan Wang ,&nbsp;Shuwei Li ,&nbsp;Ming Zhang ,&nbsp;Yuanzhen Zhang","doi":"10.1016/j.ecoenv.2024.117275","DOIUrl":null,"url":null,"abstract":"<div><div>Bisphenol A (BPA) exposure is linked to multiple adverse health outcomes, prompting the rise of \"BPA-free\" products. However, substitutes like Bisphenol S (BPS) and Bisphenol F (BPF) are equally prevalent, with detection frequencies and concentrations rivaling BPA. Our research previously identified BPA as an endocrine disruptor affecting reproductive and developmental systems. This study explores the impact of BPA, BPS, and BPF on endometrial decidualization and receptivity. We detected these bisphenols in serum samples from infertile women undergoing assisted reproductive technology (ART) treatment whose average age was 31.58 years. Human endometrial stromal cells were exposed to varying concentrations (0, 1 nM, 10 nM, 100 nM, and 1 µM) of BPA, BPS, and BPF, following hormonal induction of decidualization (10 nM E2 (Estradiol) + 0.5 mM cAMP (Cyclic adenosine monophosphate) + 1 µM MPA (Medroxyprogesterone acetate) for 6 days). Methods including CCK-8, RT-qPCR, untargeted metabolomics, and transcriptome sequencing assessed cell proliferation, molecular markers, gene expression, and metabolites. BPS levels in the serum of infertile patients were significantly higher than BPA (14.52 vs. 2.58 ng/mL) and even more pronounced in the recurrent implantation failure (RIF) group compared to the Control group (23.46 vs. 5.57 ng/mL). Findings revealed that BPA and its substitutes inhibited endometrial stromal cell proliferation and reduced decidualization markers. Differential metabolites (25, 66, 104) and gene expressions (3260, 9686, 10357) were observed with BPA, BPF, and BPS exposure, respectively. Enriched pathways included glutathione metabolism, arginine biosynthesis, ABC transporters, cAMP signaling, and glucagon signaling. Metabolomics and transcriptome analyses unveiled the reproductive toxic effects of BPA and its substitutes, suggesting significant impacts on endometrial decidualization through diverse signaling pathways.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"287 ","pages":"Article 117275"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BPA-free? Exploring the reproductive toxicity of BPA substitutes BPS and BPF on endometrial decidualization\",\"authors\":\"Yao Xiong ,&nbsp;Shaoyuan Xu ,&nbsp;Ziwei Wang ,&nbsp;Zihan Wang ,&nbsp;Shuwei Li ,&nbsp;Ming Zhang ,&nbsp;Yuanzhen Zhang\",\"doi\":\"10.1016/j.ecoenv.2024.117275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bisphenol A (BPA) exposure is linked to multiple adverse health outcomes, prompting the rise of \\\"BPA-free\\\" products. However, substitutes like Bisphenol S (BPS) and Bisphenol F (BPF) are equally prevalent, with detection frequencies and concentrations rivaling BPA. Our research previously identified BPA as an endocrine disruptor affecting reproductive and developmental systems. This study explores the impact of BPA, BPS, and BPF on endometrial decidualization and receptivity. We detected these bisphenols in serum samples from infertile women undergoing assisted reproductive technology (ART) treatment whose average age was 31.58 years. Human endometrial stromal cells were exposed to varying concentrations (0, 1 nM, 10 nM, 100 nM, and 1 µM) of BPA, BPS, and BPF, following hormonal induction of decidualization (10 nM E2 (Estradiol) + 0.5 mM cAMP (Cyclic adenosine monophosphate) + 1 µM MPA (Medroxyprogesterone acetate) for 6 days). Methods including CCK-8, RT-qPCR, untargeted metabolomics, and transcriptome sequencing assessed cell proliferation, molecular markers, gene expression, and metabolites. BPS levels in the serum of infertile patients were significantly higher than BPA (14.52 vs. 2.58 ng/mL) and even more pronounced in the recurrent implantation failure (RIF) group compared to the Control group (23.46 vs. 5.57 ng/mL). Findings revealed that BPA and its substitutes inhibited endometrial stromal cell proliferation and reduced decidualization markers. Differential metabolites (25, 66, 104) and gene expressions (3260, 9686, 10357) were observed with BPA, BPF, and BPS exposure, respectively. Enriched pathways included glutathione metabolism, arginine biosynthesis, ABC transporters, cAMP signaling, and glucagon signaling. Metabolomics and transcriptome analyses unveiled the reproductive toxic effects of BPA and its substitutes, suggesting significant impacts on endometrial decidualization through diverse signaling pathways.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"287 \",\"pages\":\"Article 117275\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324013514\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324013514","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

双酚 A(BPA)暴露与多种不良健康后果有关,这促使 "不含 BPA "产品的兴起。然而,双酚 S (BPS) 和双酚 F (BPF) 等替代品同样普遍存在,其检测频率和浓度可与双酚 A 相媲美。我们之前的研究发现,双酚 A 是一种影响生殖和发育系统的内分泌干扰物。本研究探讨了双酚 A、双酚 BPS 和双酚 F 对子宫内膜蜕膜和接受能力的影响。我们在接受辅助生殖技术(ART)治疗的不孕妇女的血清样本中检测到了这些双酚,这些妇女的平均年龄为 31.58 岁。在激素诱导蜕膜化(10 nM E2(雌二醇)+ 0.5 mM cAMP(环磷酸腺苷)+ 1 µM MPA(醋酸甲羟孕酮),持续 6 天)后,人类子宫内膜基质细胞暴露于不同浓度(0、1 nM、10 nM、100 nM 和 1 µM)的双酚 A、双酚 BPS 和双酚 F。包括 CCK-8、RT-qPCR、非靶向代谢组学和转录组测序在内的方法对细胞增殖、分子标记物、基因表达和代谢物进行了评估。不孕症患者血清中的双酚A水平明显高于双酚A(14.52 vs. 2.58 ng/mL),与对照组(23.46 vs. 5.57 ng/mL)相比,复发性植入失败(RIF)组的双酚A水平更高。研究结果表明,双酚 A 及其替代品抑制了子宫内膜基质细胞的增殖,并降低了蜕膜化标志物。在暴露于双酚 A、双酚 F 和双酚 S 的情况下,分别观察到不同的代谢物(25、66、104)和基因表达(3260、9686、10357)。丰富的途径包括谷胱甘肽代谢、精氨酸生物合成、ABC 转运体、cAMP 信号转导和胰高血糖素信号转导。代谢组学和转录组分析揭示了双酚 A 及其替代品的生殖毒性效应,表明它们通过不同的信号通路对子宫内膜的蜕变产生了重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BPA-free? Exploring the reproductive toxicity of BPA substitutes BPS and BPF on endometrial decidualization
Bisphenol A (BPA) exposure is linked to multiple adverse health outcomes, prompting the rise of "BPA-free" products. However, substitutes like Bisphenol S (BPS) and Bisphenol F (BPF) are equally prevalent, with detection frequencies and concentrations rivaling BPA. Our research previously identified BPA as an endocrine disruptor affecting reproductive and developmental systems. This study explores the impact of BPA, BPS, and BPF on endometrial decidualization and receptivity. We detected these bisphenols in serum samples from infertile women undergoing assisted reproductive technology (ART) treatment whose average age was 31.58 years. Human endometrial stromal cells were exposed to varying concentrations (0, 1 nM, 10 nM, 100 nM, and 1 µM) of BPA, BPS, and BPF, following hormonal induction of decidualization (10 nM E2 (Estradiol) + 0.5 mM cAMP (Cyclic adenosine monophosphate) + 1 µM MPA (Medroxyprogesterone acetate) for 6 days). Methods including CCK-8, RT-qPCR, untargeted metabolomics, and transcriptome sequencing assessed cell proliferation, molecular markers, gene expression, and metabolites. BPS levels in the serum of infertile patients were significantly higher than BPA (14.52 vs. 2.58 ng/mL) and even more pronounced in the recurrent implantation failure (RIF) group compared to the Control group (23.46 vs. 5.57 ng/mL). Findings revealed that BPA and its substitutes inhibited endometrial stromal cell proliferation and reduced decidualization markers. Differential metabolites (25, 66, 104) and gene expressions (3260, 9686, 10357) were observed with BPA, BPF, and BPS exposure, respectively. Enriched pathways included glutathione metabolism, arginine biosynthesis, ABC transporters, cAMP signaling, and glucagon signaling. Metabolomics and transcriptome analyses unveiled the reproductive toxic effects of BPA and its substitutes, suggesting significant impacts on endometrial decidualization through diverse signaling pathways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
The Aloe vera acemannan polysaccharides inhibit phthalate-induced cell viability, metastasis, and stemness in colorectal cancer cells. The correlation between fluoride-induced bone damage and reduced DLAV formation in Zebrafish Larvae. Time spent in outdoor light is associated with increased blood pressure, increased hypertension risk, and decreased hypotension risk. cGAS deficiency mitigated PM2.5-induced lung injury by inhibiting ferroptosis. Combined effects and potential mechanisms of phthalate metabolites on serum sex hormones among reproductive-aged women: An integrated epidemiology and computational toxicology study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1