Kanchana RK. Dilrukshi , Ilaria R. Merutka , Melissa Chernick , Stephanie Rohrbach , Remy Babich , Niroshan Withanage , Pani W. Fernando , Nishad Jayasundara
{"title":"确定不良行为者:采用线性混合效应模型方法阐明饮用水中金属混合物的行为毒性。","authors":"Kanchana RK. Dilrukshi , Ilaria R. Merutka , Melissa Chernick , Stephanie Rohrbach , Remy Babich , Niroshan Withanage , Pani W. Fernando , Nishad Jayasundara","doi":"10.1016/j.ecoenv.2024.117296","DOIUrl":null,"url":null,"abstract":"<div><div>Mixtures of chemical contaminants can pose a significant health risk to humans and wildlife, even at levels considered safe for each individual chemical. There is a critical need to develop statistical methods to evaluate the drivers of toxic effects in chemical mixtures (i.e., bad actors) from exposure studies. Here, we develop a hierarchical modeling framework to disentangle the toxicity of complex metal mixtures from a screening study of 92 drinking well water samples containing multiple metal elements from Maine and New Hampshire, USA. In order to screen for neurodevelopmental impacts from exposure to these drinking water samples, we use a larval zebrafish (<em>Danio rerio</em>) behavioral assay. Zebrafish are an advantageous toxicological model organism due to combining the complexity of a vertebrate organism and higher-throughput exposure methods. We formulate a linear mixed modeling approach that captures intrinsic complexity in a common larval behavioral assay in order to improve its sensitivity and rigor and identify drivers of behavioral toxicity from the metal mixtures within the drinking water samples. Our analysis identifies lead (Pb), cadmium (Cd), nickel (Ni), copper (Cu), barium (Ba), and uranium (U) as metals that consistently impact larval locomotor activity, individually and across nine pairs of those metals. Our model also elucidates three distinct clusters of metal mixture components that drive behavioral effects: (Ba:Cu:U), (Ni:Pb:U), (Ba:Pb:U). Having identified a set of “bad-actor” metals from the water samples, we conduct exposure experiments for each individual metal (Pb, Cd, Ni, Cu, and Ba) at levels considered safe by the US Environmental Protection Agency drinking water regulatory limits and validate Pb, Ni, Cu, and Ba as behavioral toxicants at these concentrations. Collectively, our modeling approach estimates the impact of metal elements on a complex behavioral outcome in a statistically robust manner and establishes an approach to capture “bad actors” and key chemical interactions in a complex mixture.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"287 ","pages":"Article 117296"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining bad actors: A linear mixed effects model approach to elucidate behavioral toxicity of metal mixtures in drinking water\",\"authors\":\"Kanchana RK. Dilrukshi , Ilaria R. Merutka , Melissa Chernick , Stephanie Rohrbach , Remy Babich , Niroshan Withanage , Pani W. Fernando , Nishad Jayasundara\",\"doi\":\"10.1016/j.ecoenv.2024.117296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mixtures of chemical contaminants can pose a significant health risk to humans and wildlife, even at levels considered safe for each individual chemical. There is a critical need to develop statistical methods to evaluate the drivers of toxic effects in chemical mixtures (i.e., bad actors) from exposure studies. Here, we develop a hierarchical modeling framework to disentangle the toxicity of complex metal mixtures from a screening study of 92 drinking well water samples containing multiple metal elements from Maine and New Hampshire, USA. In order to screen for neurodevelopmental impacts from exposure to these drinking water samples, we use a larval zebrafish (<em>Danio rerio</em>) behavioral assay. Zebrafish are an advantageous toxicological model organism due to combining the complexity of a vertebrate organism and higher-throughput exposure methods. We formulate a linear mixed modeling approach that captures intrinsic complexity in a common larval behavioral assay in order to improve its sensitivity and rigor and identify drivers of behavioral toxicity from the metal mixtures within the drinking water samples. Our analysis identifies lead (Pb), cadmium (Cd), nickel (Ni), copper (Cu), barium (Ba), and uranium (U) as metals that consistently impact larval locomotor activity, individually and across nine pairs of those metals. Our model also elucidates three distinct clusters of metal mixture components that drive behavioral effects: (Ba:Cu:U), (Ni:Pb:U), (Ba:Pb:U). Having identified a set of “bad-actor” metals from the water samples, we conduct exposure experiments for each individual metal (Pb, Cd, Ni, Cu, and Ba) at levels considered safe by the US Environmental Protection Agency drinking water regulatory limits and validate Pb, Ni, Cu, and Ba as behavioral toxicants at these concentrations. Collectively, our modeling approach estimates the impact of metal elements on a complex behavioral outcome in a statistically robust manner and establishes an approach to capture “bad actors” and key chemical interactions in a complex mixture.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"287 \",\"pages\":\"Article 117296\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324013721\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324013721","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Determining bad actors: A linear mixed effects model approach to elucidate behavioral toxicity of metal mixtures in drinking water
Mixtures of chemical contaminants can pose a significant health risk to humans and wildlife, even at levels considered safe for each individual chemical. There is a critical need to develop statistical methods to evaluate the drivers of toxic effects in chemical mixtures (i.e., bad actors) from exposure studies. Here, we develop a hierarchical modeling framework to disentangle the toxicity of complex metal mixtures from a screening study of 92 drinking well water samples containing multiple metal elements from Maine and New Hampshire, USA. In order to screen for neurodevelopmental impacts from exposure to these drinking water samples, we use a larval zebrafish (Danio rerio) behavioral assay. Zebrafish are an advantageous toxicological model organism due to combining the complexity of a vertebrate organism and higher-throughput exposure methods. We formulate a linear mixed modeling approach that captures intrinsic complexity in a common larval behavioral assay in order to improve its sensitivity and rigor and identify drivers of behavioral toxicity from the metal mixtures within the drinking water samples. Our analysis identifies lead (Pb), cadmium (Cd), nickel (Ni), copper (Cu), barium (Ba), and uranium (U) as metals that consistently impact larval locomotor activity, individually and across nine pairs of those metals. Our model also elucidates three distinct clusters of metal mixture components that drive behavioral effects: (Ba:Cu:U), (Ni:Pb:U), (Ba:Pb:U). Having identified a set of “bad-actor” metals from the water samples, we conduct exposure experiments for each individual metal (Pb, Cd, Ni, Cu, and Ba) at levels considered safe by the US Environmental Protection Agency drinking water regulatory limits and validate Pb, Ni, Cu, and Ba as behavioral toxicants at these concentrations. Collectively, our modeling approach estimates the impact of metal elements on a complex behavioral outcome in a statistically robust manner and establishes an approach to capture “bad actors” and key chemical interactions in a complex mixture.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.