Toi Ketehouli , Erica M. Goss , Marina S. Ascunce , Samuel J. Martins
{"title":"抗生素引起的柑橘菌群失调对代谢和生理的影响","authors":"Toi Ketehouli , Erica M. Goss , Marina S. Ascunce , Samuel J. Martins","doi":"10.1016/j.ecoenv.2024.117325","DOIUrl":null,"url":null,"abstract":"<div><div>Streptomycin (Str) and oxytetracycline (Otc) are widely used antibiotics to manage bacterial diseases in citrus and other crops. However, their impacts on the rhizosphere bacterial assembly and plant physiology are poorly understood. The aim of this study was to examine the effects of Str and Otc on the physiology (assimilation, transpiration rate, intracellular CO<sub>2</sub>, and stomatal conductance to water vapor), rhizosphere bacterial assemblages (16S rRNA gene high-throughput amplicon sequencing), and rhizosphere metabolite profiles in healthy <em>Citrus reticulata</em> trees. The results indicated a reduction in photosynthesis after Str and Otc treatments, whereas CO<sub>2</sub> outflow stayed constant. Both antibiotics decreased the culturable numbers of bacteria. Analysis of the microbiome showed changes in relative abundance of bacterial groups, specifically <em>Pseudomonas, Agrobacterium,</em> and <em>Streptomyces</em>, in response to the antibiotics. Metabolite profiles changed in streptomycin- and oxytetracycline-treated citrus plants suggesting response to microbe targets or induction of stress responses. This study advances knowledge of antibiotic-driven effects on the rhizosphere microbiome, rhizosphere metabolome, and plant physiology, which is essential for managing plant diseases while safeguarding rhizosphere ecology and long-term plant health.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"287 ","pages":"Article 117325"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic and physiological effects of antibiotic-induced dysbiosis in citrus\",\"authors\":\"Toi Ketehouli , Erica M. Goss , Marina S. Ascunce , Samuel J. Martins\",\"doi\":\"10.1016/j.ecoenv.2024.117325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Streptomycin (Str) and oxytetracycline (Otc) are widely used antibiotics to manage bacterial diseases in citrus and other crops. However, their impacts on the rhizosphere bacterial assembly and plant physiology are poorly understood. The aim of this study was to examine the effects of Str and Otc on the physiology (assimilation, transpiration rate, intracellular CO<sub>2</sub>, and stomatal conductance to water vapor), rhizosphere bacterial assemblages (16S rRNA gene high-throughput amplicon sequencing), and rhizosphere metabolite profiles in healthy <em>Citrus reticulata</em> trees. The results indicated a reduction in photosynthesis after Str and Otc treatments, whereas CO<sub>2</sub> outflow stayed constant. Both antibiotics decreased the culturable numbers of bacteria. Analysis of the microbiome showed changes in relative abundance of bacterial groups, specifically <em>Pseudomonas, Agrobacterium,</em> and <em>Streptomyces</em>, in response to the antibiotics. Metabolite profiles changed in streptomycin- and oxytetracycline-treated citrus plants suggesting response to microbe targets or induction of stress responses. This study advances knowledge of antibiotic-driven effects on the rhizosphere microbiome, rhizosphere metabolome, and plant physiology, which is essential for managing plant diseases while safeguarding rhizosphere ecology and long-term plant health.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"287 \",\"pages\":\"Article 117325\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324014015\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324014015","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Metabolic and physiological effects of antibiotic-induced dysbiosis in citrus
Streptomycin (Str) and oxytetracycline (Otc) are widely used antibiotics to manage bacterial diseases in citrus and other crops. However, their impacts on the rhizosphere bacterial assembly and plant physiology are poorly understood. The aim of this study was to examine the effects of Str and Otc on the physiology (assimilation, transpiration rate, intracellular CO2, and stomatal conductance to water vapor), rhizosphere bacterial assemblages (16S rRNA gene high-throughput amplicon sequencing), and rhizosphere metabolite profiles in healthy Citrus reticulata trees. The results indicated a reduction in photosynthesis after Str and Otc treatments, whereas CO2 outflow stayed constant. Both antibiotics decreased the culturable numbers of bacteria. Analysis of the microbiome showed changes in relative abundance of bacterial groups, specifically Pseudomonas, Agrobacterium, and Streptomyces, in response to the antibiotics. Metabolite profiles changed in streptomycin- and oxytetracycline-treated citrus plants suggesting response to microbe targets or induction of stress responses. This study advances knowledge of antibiotic-driven effects on the rhizosphere microbiome, rhizosphere metabolome, and plant physiology, which is essential for managing plant diseases while safeguarding rhizosphere ecology and long-term plant health.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.