农药残留:通过 omics 缩小环境暴露与慢性疾病之间的差距。

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2024-11-15 DOI:10.1016/j.ecoenv.2024.117335
Lingling Cao , Qiyuan Kang , Yuan Tian
{"title":"农药残留:通过 omics 缩小环境暴露与慢性疾病之间的差距。","authors":"Lingling Cao ,&nbsp;Qiyuan Kang ,&nbsp;Yuan Tian","doi":"10.1016/j.ecoenv.2024.117335","DOIUrl":null,"url":null,"abstract":"<div><div>Pesticide residues, resulting from agricultural practices, pose significant health and environmental risks. This review synthesizes the current understanding of pesticide impacts on the immune system, highlighting their role in chronic diseases such as asthma, diabetes, Parkinson's disease (PD) and cancer. We emphasize the significant role of omics technologies in the study of pesticide toxicity mechanisms. The integration of genomics, proteomics, metabolomics, and epigenomics offers a multidimensional strategy for a comprehensive assessment of pesticide effects, facilitating personalized risk management and policy formulation. We advocate for stringent regulatory policies, public education, and global cooperation to enhance food safety and environmental sustainability. By adopting a unified approach, we aim to mitigate the risks of pesticide residues, ensuring human health and ecological balance are preserved.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"287 ","pages":"Article 117335"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pesticide residues: Bridging the gap between environmental exposure and chronic disease through omics\",\"authors\":\"Lingling Cao ,&nbsp;Qiyuan Kang ,&nbsp;Yuan Tian\",\"doi\":\"10.1016/j.ecoenv.2024.117335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pesticide residues, resulting from agricultural practices, pose significant health and environmental risks. This review synthesizes the current understanding of pesticide impacts on the immune system, highlighting their role in chronic diseases such as asthma, diabetes, Parkinson's disease (PD) and cancer. We emphasize the significant role of omics technologies in the study of pesticide toxicity mechanisms. The integration of genomics, proteomics, metabolomics, and epigenomics offers a multidimensional strategy for a comprehensive assessment of pesticide effects, facilitating personalized risk management and policy formulation. We advocate for stringent regulatory policies, public education, and global cooperation to enhance food safety and environmental sustainability. By adopting a unified approach, we aim to mitigate the risks of pesticide residues, ensuring human health and ecological balance are preserved.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"287 \",\"pages\":\"Article 117335\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324014118\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324014118","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

农业生产中产生的农药残留对健康和环境构成了重大风险。这篇综述综述了目前人们对农药对免疫系统影响的认识,强调了农药在哮喘、糖尿病、帕金森病(PD)和癌症等慢性疾病中的作用。我们强调了全息技术在农药毒性机制研究中的重要作用。基因组学、蛋白质组学、代谢组学和表观基因组学的整合为全面评估农药效应提供了一种多维战略,有利于个性化风险管理和政策制定。我们倡导严格的监管政策、公众教育和全球合作,以加强食品安全和环境的可持续发展。通过采用统一的方法,我们旨在降低农药残留的风险,确保人类健康和生态平衡得到保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pesticide residues: Bridging the gap between environmental exposure and chronic disease through omics
Pesticide residues, resulting from agricultural practices, pose significant health and environmental risks. This review synthesizes the current understanding of pesticide impacts on the immune system, highlighting their role in chronic diseases such as asthma, diabetes, Parkinson's disease (PD) and cancer. We emphasize the significant role of omics technologies in the study of pesticide toxicity mechanisms. The integration of genomics, proteomics, metabolomics, and epigenomics offers a multidimensional strategy for a comprehensive assessment of pesticide effects, facilitating personalized risk management and policy formulation. We advocate for stringent regulatory policies, public education, and global cooperation to enhance food safety and environmental sustainability. By adopting a unified approach, we aim to mitigate the risks of pesticide residues, ensuring human health and ecological balance are preserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
The Aloe vera acemannan polysaccharides inhibit phthalate-induced cell viability, metastasis, and stemness in colorectal cancer cells. The correlation between fluoride-induced bone damage and reduced DLAV formation in Zebrafish Larvae. Time spent in outdoor light is associated with increased blood pressure, increased hypertension risk, and decreased hypotension risk. cGAS deficiency mitigated PM2.5-induced lung injury by inhibiting ferroptosis. Combined effects and potential mechanisms of phthalate metabolites on serum sex hormones among reproductive-aged women: An integrated epidemiology and computational toxicology study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1