Mengyu Di, Wenqi Liu, Dan Shan, Yue Zhao, Changyuan Zhang, Yankun Wang, Ran Yi, Yang Wu, Jing Zheng, Baiqi Wang
{"title":"利用自然光:新型纳米异质结光催化剂 NaGdF4:Yb,Tm@TiO2/Cu2(OH)2CO3 用于实际废水修复。","authors":"Mengyu Di, Wenqi Liu, Dan Shan, Yue Zhao, Changyuan Zhang, Yankun Wang, Ran Yi, Yang Wu, Jing Zheng, Baiqi Wang","doi":"10.1016/j.jenvman.2024.123210","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces NaGdF<sub>4</sub>:Yb,Tm@TiO<sub>2</sub>/Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub> (UTCu), an innovative nanophotocatalyst designed to address global energy crises and water contamination issues. Our developed photocatalyst, NaGdF<sub>4</sub>:Yb,Tm@TiO<sub>2</sub>/0.5mol%Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub> (UTCu0.5), demonstrated exceptional efficiency, degrading 96.3% of malachite green (MG) within 2 h under Xenon lamp irradiation. The photocatalytic degradation rate of UTCu0.5 surpassed those of UT, Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub>, and P25 (Commercial TiO<sub>2</sub>) by 3.3, 9, and 2.8 times, respectively. The process effectively mineralized MG into less harmful compounds, marking its potential for eco-friendly wastewater treatment. Furthermore, UTCu0.5 exhibited robust degradation capabilities across various organic dyes and maintained its efficacy in mixed dye systems. Detailed mechanistic analysis revealed that the ·OH and ·O<sub>2</sub><sup>-</sup> radicals play pivotal roles in the degradation process, facilitated by the formation of heterojunctions that enhance carrier separation and photocatalytic performance. Theoretical studies supported the significance of S-scheme heterojunctions in boosting the photocatalytic activity of UTCu0.5. Additionally, the catalyst was effective in degrading organic pollutants in different water matrices under both Xenon lamp irradiation and direct sunlight. Remarkably, it achieved a 77.4% removal rate of NH<sub>4</sub><sup>⁺</sup>-N in real municipal wastewater under natural sunlight, with a selective conversion rate of 95.3% to N<sub>2</sub>, underscoring its practical applicability in environmental remediation. This research not only progresses photocatalysis technology but also provides vital insights for enhancing natural condition wastewater treatment strategies.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"371 ","pages":"123210"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing natural light: Novel nanoheterojunction photocatalyst NaGdF<sub>4</sub>:Yb,Tm@TiO<sub>2</sub>/Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub> for actual wastewater remediation.\",\"authors\":\"Mengyu Di, Wenqi Liu, Dan Shan, Yue Zhao, Changyuan Zhang, Yankun Wang, Ran Yi, Yang Wu, Jing Zheng, Baiqi Wang\",\"doi\":\"10.1016/j.jenvman.2024.123210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces NaGdF<sub>4</sub>:Yb,Tm@TiO<sub>2</sub>/Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub> (UTCu), an innovative nanophotocatalyst designed to address global energy crises and water contamination issues. Our developed photocatalyst, NaGdF<sub>4</sub>:Yb,Tm@TiO<sub>2</sub>/0.5mol%Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub> (UTCu0.5), demonstrated exceptional efficiency, degrading 96.3% of malachite green (MG) within 2 h under Xenon lamp irradiation. The photocatalytic degradation rate of UTCu0.5 surpassed those of UT, Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub>, and P25 (Commercial TiO<sub>2</sub>) by 3.3, 9, and 2.8 times, respectively. The process effectively mineralized MG into less harmful compounds, marking its potential for eco-friendly wastewater treatment. Furthermore, UTCu0.5 exhibited robust degradation capabilities across various organic dyes and maintained its efficacy in mixed dye systems. Detailed mechanistic analysis revealed that the ·OH and ·O<sub>2</sub><sup>-</sup> radicals play pivotal roles in the degradation process, facilitated by the formation of heterojunctions that enhance carrier separation and photocatalytic performance. Theoretical studies supported the significance of S-scheme heterojunctions in boosting the photocatalytic activity of UTCu0.5. Additionally, the catalyst was effective in degrading organic pollutants in different water matrices under both Xenon lamp irradiation and direct sunlight. Remarkably, it achieved a 77.4% removal rate of NH<sub>4</sub><sup>⁺</sup>-N in real municipal wastewater under natural sunlight, with a selective conversion rate of 95.3% to N<sub>2</sub>, underscoring its practical applicability in environmental remediation. This research not only progresses photocatalysis technology but also provides vital insights for enhancing natural condition wastewater treatment strategies.</p>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"371 \",\"pages\":\"123210\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jenvman.2024.123210\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123210","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Harnessing natural light: Novel nanoheterojunction photocatalyst NaGdF4:Yb,Tm@TiO2/Cu2(OH)2CO3 for actual wastewater remediation.
This study introduces NaGdF4:Yb,Tm@TiO2/Cu2(OH)2CO3 (UTCu), an innovative nanophotocatalyst designed to address global energy crises and water contamination issues. Our developed photocatalyst, NaGdF4:Yb,Tm@TiO2/0.5mol%Cu2(OH)2CO3 (UTCu0.5), demonstrated exceptional efficiency, degrading 96.3% of malachite green (MG) within 2 h under Xenon lamp irradiation. The photocatalytic degradation rate of UTCu0.5 surpassed those of UT, Cu2(OH)2CO3, and P25 (Commercial TiO2) by 3.3, 9, and 2.8 times, respectively. The process effectively mineralized MG into less harmful compounds, marking its potential for eco-friendly wastewater treatment. Furthermore, UTCu0.5 exhibited robust degradation capabilities across various organic dyes and maintained its efficacy in mixed dye systems. Detailed mechanistic analysis revealed that the ·OH and ·O2- radicals play pivotal roles in the degradation process, facilitated by the formation of heterojunctions that enhance carrier separation and photocatalytic performance. Theoretical studies supported the significance of S-scheme heterojunctions in boosting the photocatalytic activity of UTCu0.5. Additionally, the catalyst was effective in degrading organic pollutants in different water matrices under both Xenon lamp irradiation and direct sunlight. Remarkably, it achieved a 77.4% removal rate of NH4⁺-N in real municipal wastewater under natural sunlight, with a selective conversion rate of 95.3% to N2, underscoring its practical applicability in environmental remediation. This research not only progresses photocatalysis technology but also provides vital insights for enhancing natural condition wastewater treatment strategies.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.