掺钼增强镍基氢氧化物电催化剂在乙醇氧化过程中的去质子化能力。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-11-02 DOI:10.1016/j.jcis.2024.10.197
Ya Tang , Hongzhan Chen , Xueqi Chen , Lijie Zhu , Yanting Ye , Dengke Zhang , Wenyu Huang , Fangyan Xie , Jian Chen , Nan Wang , Yanshuo Jin , Hui Meng
{"title":"掺钼增强镍基氢氧化物电催化剂在乙醇氧化过程中的去质子化能力。","authors":"Ya Tang ,&nbsp;Hongzhan Chen ,&nbsp;Xueqi Chen ,&nbsp;Lijie Zhu ,&nbsp;Yanting Ye ,&nbsp;Dengke Zhang ,&nbsp;Wenyu Huang ,&nbsp;Fangyan Xie ,&nbsp;Jian Chen ,&nbsp;Nan Wang ,&nbsp;Yanshuo Jin ,&nbsp;Hui Meng","doi":"10.1016/j.jcis.2024.10.197","DOIUrl":null,"url":null,"abstract":"<div><div>With technological advancements, the practical application of ethanol oxidation reaction (EOR) is becoming increasingly promising, yet the need for higher ethanol concentrations highlights the growing importance of the deprotonation ability (Ni<sup>2+</sup> to Ni<sup>3+</sup>) of the catalyst. The deprotonation ability is the key step for nickel-based catalysts in EOR, as it is essential for Ni<sup>2+</sup> to continuously undergo deprotonation to transform into Ni<sup>3+</sup> in order to maintain the continuous EOR. Herein, we developed Mo-doped Ni(OH)<sub>2</sub> nanosheets by a hydrothermal method. The Mo-doped Ni(OH)<sub>2</sub> nanosheets show excellent EOR performance due to the high valence doping of Mo, the onset potential of the oxidation peak (Ni<sup>2+</sup> to Ni<sup>3+</sup>) appears at a position with a small overpotential,. The in-situ Raman spectroscopy technique further characterized the increase in NiOOH in the process of EOR. The Mo-doped Ni(OH)<sub>2</sub> nanocomposite catalyst facilitates the oxidation of Ni<sup>2+</sup> into Ni<sup>3+</sup>. Based on the above theoretical guidance, Mo-doped Fe/Ni(OH)<sub>2</sub> nanosheets was designed and synthesized. The outstanding EOR performance of the Mo-Fe/Ni(OH)<sub>2</sub>-3 showed a potential of 1.352 V at 10 mA cm<sup>−2</sup>. The catalyst was used to design three-electrode reversible zinc-ethanol-air battery (T-RZEAB), which effectively overcomes the opposing kinetic and thermodynamic requirements for EOR and oxygen reduction reaction (ORR) catalysts in the oxygen electrode. The charging voltage of T-RZEAB with Mo-Fe/Ni(OH)<sub>2</sub>-3 is 240 mV lower than that of a traditional zinc-air battery at 25 mA cm<sup>−2</sup>.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 441-452"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molybdenum-doping to enhance the deprotonation ability of nickel-based hydroxide electrocatalysts for ethanol oxidation\",\"authors\":\"Ya Tang ,&nbsp;Hongzhan Chen ,&nbsp;Xueqi Chen ,&nbsp;Lijie Zhu ,&nbsp;Yanting Ye ,&nbsp;Dengke Zhang ,&nbsp;Wenyu Huang ,&nbsp;Fangyan Xie ,&nbsp;Jian Chen ,&nbsp;Nan Wang ,&nbsp;Yanshuo Jin ,&nbsp;Hui Meng\",\"doi\":\"10.1016/j.jcis.2024.10.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With technological advancements, the practical application of ethanol oxidation reaction (EOR) is becoming increasingly promising, yet the need for higher ethanol concentrations highlights the growing importance of the deprotonation ability (Ni<sup>2+</sup> to Ni<sup>3+</sup>) of the catalyst. The deprotonation ability is the key step for nickel-based catalysts in EOR, as it is essential for Ni<sup>2+</sup> to continuously undergo deprotonation to transform into Ni<sup>3+</sup> in order to maintain the continuous EOR. Herein, we developed Mo-doped Ni(OH)<sub>2</sub> nanosheets by a hydrothermal method. The Mo-doped Ni(OH)<sub>2</sub> nanosheets show excellent EOR performance due to the high valence doping of Mo, the onset potential of the oxidation peak (Ni<sup>2+</sup> to Ni<sup>3+</sup>) appears at a position with a small overpotential,. The in-situ Raman spectroscopy technique further characterized the increase in NiOOH in the process of EOR. The Mo-doped Ni(OH)<sub>2</sub> nanocomposite catalyst facilitates the oxidation of Ni<sup>2+</sup> into Ni<sup>3+</sup>. Based on the above theoretical guidance, Mo-doped Fe/Ni(OH)<sub>2</sub> nanosheets was designed and synthesized. The outstanding EOR performance of the Mo-Fe/Ni(OH)<sub>2</sub>-3 showed a potential of 1.352 V at 10 mA cm<sup>−2</sup>. The catalyst was used to design three-electrode reversible zinc-ethanol-air battery (T-RZEAB), which effectively overcomes the opposing kinetic and thermodynamic requirements for EOR and oxygen reduction reaction (ORR) catalysts in the oxygen electrode. The charging voltage of T-RZEAB with Mo-Fe/Ni(OH)<sub>2</sub>-3 is 240 mV lower than that of a traditional zinc-air battery at 25 mA cm<sup>−2</sup>.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"680 \",\"pages\":\"Pages 441-452\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724025529\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025529","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着技术的进步,乙醇氧化反应(EOR)的实际应用前景越来越广阔,但由于需要更高浓度的乙醇,催化剂的去质子化能力(Ni2+ 到 Ni3+)变得越来越重要。去质子化能力是镍基催化剂在 EOR 中的关键步骤,因为 Ni2+ 必须不断进行去质子化转化为 Ni3+,才能维持持续的 EOR。在此,我们采用水热法开发了掺杂 Mo 的 Ni(OH)2 纳米片。由于掺杂了高价态的 Mo,氧化峰(Ni2+ 到 Ni3+)的起始电位出现在过电位较小的位置,因此掺杂 Mo 的 Ni(OH)2 纳米片显示出优异的 EOR 性能。原位拉曼光谱技术进一步确定了 EOR 过程中 NiOOH 增加的特征。掺杂 Mo 的 Ni(OH)2 纳米复合催化剂促进了 Ni2+ 氧化成 Ni3+。根据上述理论指导,设计并合成了掺杂 Mo 的 Fe/Ni(OH)2 纳米片。Mo-Fe/Ni(OH)2-3 在 10 mA cm-2 时的电位为 1.352 V,具有出色的 EOR 性能。该催化剂被用于设计三电极可逆锌-乙醇-空气电池(T-RZEAB),有效地克服了氧电极对EOR和氧还原反应(ORR)催化剂的动力学和热力学要求相反的问题。在 25 mA cm-2 的条件下,使用 Mo-Fe/Ni(OH)2-3 的 T-RZEAB 的充电电压比传统锌-空气电池低 240 mV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molybdenum-doping to enhance the deprotonation ability of nickel-based hydroxide electrocatalysts for ethanol oxidation
With technological advancements, the practical application of ethanol oxidation reaction (EOR) is becoming increasingly promising, yet the need for higher ethanol concentrations highlights the growing importance of the deprotonation ability (Ni2+ to Ni3+) of the catalyst. The deprotonation ability is the key step for nickel-based catalysts in EOR, as it is essential for Ni2+ to continuously undergo deprotonation to transform into Ni3+ in order to maintain the continuous EOR. Herein, we developed Mo-doped Ni(OH)2 nanosheets by a hydrothermal method. The Mo-doped Ni(OH)2 nanosheets show excellent EOR performance due to the high valence doping of Mo, the onset potential of the oxidation peak (Ni2+ to Ni3+) appears at a position with a small overpotential,. The in-situ Raman spectroscopy technique further characterized the increase in NiOOH in the process of EOR. The Mo-doped Ni(OH)2 nanocomposite catalyst facilitates the oxidation of Ni2+ into Ni3+. Based on the above theoretical guidance, Mo-doped Fe/Ni(OH)2 nanosheets was designed and synthesized. The outstanding EOR performance of the Mo-Fe/Ni(OH)2-3 showed a potential of 1.352 V at 10 mA cm−2. The catalyst was used to design three-electrode reversible zinc-ethanol-air battery (T-RZEAB), which effectively overcomes the opposing kinetic and thermodynamic requirements for EOR and oxygen reduction reaction (ORR) catalysts in the oxygen electrode. The charging voltage of T-RZEAB with Mo-Fe/Ni(OH)2-3 is 240 mV lower than that of a traditional zinc-air battery at 25 mA cm−2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe2O3 photoanode for efficient photoelectrochemical water oxidation. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries. Manipulating the d-band center of bimetallic molybdenum vanadate for high performance aqueous zinc-ion battery. Separator modification with a high-entropy hydroxyphosphate, Co0.29Ni0.15Fe0.33Cu0.16Ca3.9(PO4)3(OH), for high-performance Li-S batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1