{"title":"控制金属与支撑物之间的相互作用,为 COx 加氢反应设计高活性、高稳定性催化剂。","authors":"Shilong Chen","doi":"10.1002/cssc.202401437","DOIUrl":null,"url":null,"abstract":"<p><p>This perspective focuses on the modulation of metal-support interaction (MSI) in catalysts for CO<sub>x</sub> hydrogenation, highlighting their profound impact on catalytic performance. Firstly, it outlines different strategies, including the use of highly reducible oxides and moderate reduction treatments, which induce the classical strong metal-support interaction (SMSI) effect and the electronic metal-support interaction (EMSI) effect. Morphology engineering and crystalline phase manipulation of oxides presented as effective methods to control EMSI are also discussed. The discrimination of SMSI and EMSI can be achieved using oxides with low encapsulation tendencies, such as ZrO<sub>2</sub>, which supports electronic modifications without or minimizing the overgrowth issues, optimizing the catalytic performance for methanation. Then, the synergy between Cu and ZnO in methanol synthesis, enhanced by SMSI, is emphasized inside. Optimizing support oxides to control oxygen vacancies enhances the catalytic performance of CO<sub>2</sub> hydrogenation to methanol. Perspectives for the future research on the fundamental understanding of structure-MSI-performance relationship for catalyst design is discussed.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401437"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling Metal-Support Interactions to Engineer Highly Active and Stable Catalysts for CO<sub>x</sub> Hydrogenation.\",\"authors\":\"Shilong Chen\",\"doi\":\"10.1002/cssc.202401437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This perspective focuses on the modulation of metal-support interaction (MSI) in catalysts for CO<sub>x</sub> hydrogenation, highlighting their profound impact on catalytic performance. Firstly, it outlines different strategies, including the use of highly reducible oxides and moderate reduction treatments, which induce the classical strong metal-support interaction (SMSI) effect and the electronic metal-support interaction (EMSI) effect. Morphology engineering and crystalline phase manipulation of oxides presented as effective methods to control EMSI are also discussed. The discrimination of SMSI and EMSI can be achieved using oxides with low encapsulation tendencies, such as ZrO<sub>2</sub>, which supports electronic modifications without or minimizing the overgrowth issues, optimizing the catalytic performance for methanation. Then, the synergy between Cu and ZnO in methanol synthesis, enhanced by SMSI, is emphasized inside. Optimizing support oxides to control oxygen vacancies enhances the catalytic performance of CO<sub>2</sub> hydrogenation to methanol. Perspectives for the future research on the fundamental understanding of structure-MSI-performance relationship for catalyst design is discussed.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202401437\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401437\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401437","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本视角重点关注 COx 加氢催化剂中金属-支撑相互作用(MSI)的调制,强调其对催化性能的深远影响。首先,它概述了不同的策略,包括使用高还原性氧化物和适度还原处理,从而诱发经典的强金属-支撑相互作用(SMSI)效应和电子金属-支撑相互作用(EMSI)效应。此外,还讨论了作为控制 EMSI 有效方法的氧化物形态工程和结晶相处理。利用 ZrO2 等封装倾向低的氧化物可以实现 SMSI 和 EMSI 的区分,从而支持电子修饰,避免或最大限度地减少过度生长问题,优化甲烷化的催化性能。然后,在 SMSI 的作用下,强调了 Cu 和 ZnO 在甲醇合成中的协同作用。优化支撑氧化物以控制氧空位,可提高 CO2 加氢制甲醇的催化性能。讨论了催化剂设计中对结构-MSI-性能关系的基本理解的未来研究前景。
Controlling Metal-Support Interactions to Engineer Highly Active and Stable Catalysts for COx Hydrogenation.
This perspective focuses on the modulation of metal-support interaction (MSI) in catalysts for COx hydrogenation, highlighting their profound impact on catalytic performance. Firstly, it outlines different strategies, including the use of highly reducible oxides and moderate reduction treatments, which induce the classical strong metal-support interaction (SMSI) effect and the electronic metal-support interaction (EMSI) effect. Morphology engineering and crystalline phase manipulation of oxides presented as effective methods to control EMSI are also discussed. The discrimination of SMSI and EMSI can be achieved using oxides with low encapsulation tendencies, such as ZrO2, which supports electronic modifications without or minimizing the overgrowth issues, optimizing the catalytic performance for methanation. Then, the synergy between Cu and ZnO in methanol synthesis, enhanced by SMSI, is emphasized inside. Optimizing support oxides to control oxygen vacancies enhances the catalytic performance of CO2 hydrogenation to methanol. Perspectives for the future research on the fundamental understanding of structure-MSI-performance relationship for catalyst design is discussed.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology