Yonatan Wexler, Yvonne Kiere, Guy Sobol, Roye Nuriel, Shaked Azoulay-Portal, Amir Cohen, Hila Toporik, Metsada Pasmanik-Chor, Aliza Finkler, Doron Shkolnik
{"title":"番茄中的 MIZ1 类基因对根部向水性和干旱恢复的调节作用","authors":"Yonatan Wexler, Yvonne Kiere, Guy Sobol, Roye Nuriel, Shaked Azoulay-Portal, Amir Cohen, Hila Toporik, Metsada Pasmanik-Chor, Aliza Finkler, Doron Shkolnik","doi":"10.1111/pce.15260","DOIUrl":null,"url":null,"abstract":"<p><p>Drought limits crop performance worldwide. Plant roots' ability to grow toward moisture, termed hydrotropism, is considered one strategy for optimizing water recruitment from the growth medium. Based on the sequence of the hydrotropism-indispensable MIZ1 protein in Arabidopsis thaliana, we identify hydrotropism and drought-responsive genes in tomato. We utilized CRISPR/Cas9 genome-editing technology for targeted mutagenesis of three hydrotropism-associated loci (MIZ1-like) in tomato (Solanum lycopersicum). We show that the three tomato MIZ1-like genes are drought-responsive and two of them are hydrostimulation-responsive. Examination of the root hydrotropic response of triple and double mutants indicated the gene SlMIZ1-1 as indispensable for tomato root hydrotropism. Moreover, expression of the SlMIZ1-1 gene in the Arabidopsis miz1 mutant effectively complemented the lost MIZ1 functionality, including root hydrotropic bending and generation of hydrotropic Ca<sup>2+</sup> signals. Transcriptome analysis of hydrostimulated tomato root tips under control gravity and continuous clinorotation conditions was performed to identify gravitropism- and hydrotropism-responsive genes. This analysis suggested the involvement of ethylene and ABA signalling in modulating the interplay between hydrotropism and gravitropism. Unveiling the molecular mechanisms that underlie hydrotropism and drought response holds great potential for improving crop performance under limiting water availability due to global climate changes.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of Root Hydrotropism and Recovery From Drought by MIZ1-like Genes in Tomato.\",\"authors\":\"Yonatan Wexler, Yvonne Kiere, Guy Sobol, Roye Nuriel, Shaked Azoulay-Portal, Amir Cohen, Hila Toporik, Metsada Pasmanik-Chor, Aliza Finkler, Doron Shkolnik\",\"doi\":\"10.1111/pce.15260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drought limits crop performance worldwide. Plant roots' ability to grow toward moisture, termed hydrotropism, is considered one strategy for optimizing water recruitment from the growth medium. Based on the sequence of the hydrotropism-indispensable MIZ1 protein in Arabidopsis thaliana, we identify hydrotropism and drought-responsive genes in tomato. We utilized CRISPR/Cas9 genome-editing technology for targeted mutagenesis of three hydrotropism-associated loci (MIZ1-like) in tomato (Solanum lycopersicum). We show that the three tomato MIZ1-like genes are drought-responsive and two of them are hydrostimulation-responsive. Examination of the root hydrotropic response of triple and double mutants indicated the gene SlMIZ1-1 as indispensable for tomato root hydrotropism. Moreover, expression of the SlMIZ1-1 gene in the Arabidopsis miz1 mutant effectively complemented the lost MIZ1 functionality, including root hydrotropic bending and generation of hydrotropic Ca<sup>2+</sup> signals. Transcriptome analysis of hydrostimulated tomato root tips under control gravity and continuous clinorotation conditions was performed to identify gravitropism- and hydrotropism-responsive genes. This analysis suggested the involvement of ethylene and ABA signalling in modulating the interplay between hydrotropism and gravitropism. Unveiling the molecular mechanisms that underlie hydrotropism and drought response holds great potential for improving crop performance under limiting water availability due to global climate changes.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15260\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15260","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Modulation of Root Hydrotropism and Recovery From Drought by MIZ1-like Genes in Tomato.
Drought limits crop performance worldwide. Plant roots' ability to grow toward moisture, termed hydrotropism, is considered one strategy for optimizing water recruitment from the growth medium. Based on the sequence of the hydrotropism-indispensable MIZ1 protein in Arabidopsis thaliana, we identify hydrotropism and drought-responsive genes in tomato. We utilized CRISPR/Cas9 genome-editing technology for targeted mutagenesis of three hydrotropism-associated loci (MIZ1-like) in tomato (Solanum lycopersicum). We show that the three tomato MIZ1-like genes are drought-responsive and two of them are hydrostimulation-responsive. Examination of the root hydrotropic response of triple and double mutants indicated the gene SlMIZ1-1 as indispensable for tomato root hydrotropism. Moreover, expression of the SlMIZ1-1 gene in the Arabidopsis miz1 mutant effectively complemented the lost MIZ1 functionality, including root hydrotropic bending and generation of hydrotropic Ca2+ signals. Transcriptome analysis of hydrostimulated tomato root tips under control gravity and continuous clinorotation conditions was performed to identify gravitropism- and hydrotropism-responsive genes. This analysis suggested the involvement of ethylene and ABA signalling in modulating the interplay between hydrotropism and gravitropism. Unveiling the molecular mechanisms that underlie hydrotropism and drought response holds great potential for improving crop performance under limiting water availability due to global climate changes.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.