新型生物炭填充水凝胶复合材料:评估多功能性和环境应用潜力。

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2024-11-12 DOI:10.1016/j.jenvman.2024.123345
Olena Siryk, Agnieszka Tomczyk, Artur Nosalewicz, Katarzyna Szewczuk-Karpisz
{"title":"新型生物炭填充水凝胶复合材料:评估多功能性和环境应用潜力。","authors":"Olena Siryk, Agnieszka Tomczyk, Artur Nosalewicz, Katarzyna Szewczuk-Karpisz","doi":"10.1016/j.jenvman.2024.123345","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels (HGs) are hydrophilic 3D-cross-linked polymers applied, inter alia, to improve soil resistance to drought. Their combination with biochar (BC), a product of biomass pyrolysis, can result in obtaining specific composites characterized by the advantages of both initial materials. The BC introduction into HG can double its swelling degree and increase their sorption capacity by more than threefold compared to the pure HG. Furthermore, the composites are able to increase plants biomass (up to 160%), even under heavy metal contamination, and are characterized by lower nutrient release rate (up to 25%) in comparison to the pure hydrogels. This review explores the properties of biochar-filled hydrogel composites, including swelling degrees and ability to absorb heavy metals and other toxic compounds. Additionally, it discusses their agricultural applications as soil conditioners and slow-release fertilizers, covering their effects on water and nutrient retention in the soil, soil microbial activity, as well as plant performance under contamination and drought stress. Finally, the cost-economic assessment and future prospects of these novel materials were proposed. The BC-filled HGs were considered as highly promising soil amendments, but their application potential depended entirely on the development of new production technologies and the investigation of interactions occurring between the composites and the selected soil components.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"371 ","pages":"123345"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel biochar-filled hydrogel composites: Assessment of multifunctionality and potential in environmental applications.\",\"authors\":\"Olena Siryk, Agnieszka Tomczyk, Artur Nosalewicz, Katarzyna Szewczuk-Karpisz\",\"doi\":\"10.1016/j.jenvman.2024.123345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogels (HGs) are hydrophilic 3D-cross-linked polymers applied, inter alia, to improve soil resistance to drought. Their combination with biochar (BC), a product of biomass pyrolysis, can result in obtaining specific composites characterized by the advantages of both initial materials. The BC introduction into HG can double its swelling degree and increase their sorption capacity by more than threefold compared to the pure HG. Furthermore, the composites are able to increase plants biomass (up to 160%), even under heavy metal contamination, and are characterized by lower nutrient release rate (up to 25%) in comparison to the pure hydrogels. This review explores the properties of biochar-filled hydrogel composites, including swelling degrees and ability to absorb heavy metals and other toxic compounds. Additionally, it discusses their agricultural applications as soil conditioners and slow-release fertilizers, covering their effects on water and nutrient retention in the soil, soil microbial activity, as well as plant performance under contamination and drought stress. Finally, the cost-economic assessment and future prospects of these novel materials were proposed. The BC-filled HGs were considered as highly promising soil amendments, but their application potential depended entirely on the development of new production technologies and the investigation of interactions occurring between the composites and the selected soil components.</p>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"371 \",\"pages\":\"123345\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jenvman.2024.123345\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123345","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶(HGs)是一种亲水性三维交联聚合物,主要用于提高土壤的抗旱性。水凝胶与生物质热解产物--生物炭(BC)相结合,可以获得兼具两种初始材料优点的特殊复合材料。与纯 HG 相比,在 HG 中加入 BC 可使其膨胀度增加一倍,吸附能力增加三倍以上。此外,即使在重金属污染的情况下,复合材料也能增加植物的生物量(高达 160%),而且与纯水凝胶相比,复合材料的养分释放率较低(高达 25%)。本综述探讨了生物炭填充水凝胶复合材料的特性,包括溶胀度和吸收重金属及其他有毒化合物的能力。此外,还讨论了它们作为土壤改良剂和缓释肥料在农业上的应用,包括它们对土壤中水分和养分保持、土壤微生物活动以及植物在污染和干旱胁迫下的表现的影响。最后,提出了这些新型材料的成本经济评估和未来前景。人们认为萃取填充 HGs 是非常有前途的土壤改良剂,但其应用潜力完全取决于新生产技术的开发以及对复合材料与所选土壤成分之间相互作用的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel biochar-filled hydrogel composites: Assessment of multifunctionality and potential in environmental applications.

Hydrogels (HGs) are hydrophilic 3D-cross-linked polymers applied, inter alia, to improve soil resistance to drought. Their combination with biochar (BC), a product of biomass pyrolysis, can result in obtaining specific composites characterized by the advantages of both initial materials. The BC introduction into HG can double its swelling degree and increase their sorption capacity by more than threefold compared to the pure HG. Furthermore, the composites are able to increase plants biomass (up to 160%), even under heavy metal contamination, and are characterized by lower nutrient release rate (up to 25%) in comparison to the pure hydrogels. This review explores the properties of biochar-filled hydrogel composites, including swelling degrees and ability to absorb heavy metals and other toxic compounds. Additionally, it discusses their agricultural applications as soil conditioners and slow-release fertilizers, covering their effects on water and nutrient retention in the soil, soil microbial activity, as well as plant performance under contamination and drought stress. Finally, the cost-economic assessment and future prospects of these novel materials were proposed. The BC-filled HGs were considered as highly promising soil amendments, but their application potential depended entirely on the development of new production technologies and the investigation of interactions occurring between the composites and the selected soil components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
The farmgate phosphorus balance as a measure to achieve river and lake water quality targets. A conceptual framework to inform conservation status assessments of non-charismatic species. A mouse in the spotlight: Response capacity to artificial light at night in a rodent pest species, the southern multimammate mouse (Mastomys coucha). Application of advance oxidation processes for elimination of carbamazepine residues in soils. Changes in soil inorganic carbon following vegetation restoration in the cropland on the Loess Plateau in China: A meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1