用于表皮生长因子受体突变检测的 TtAgo-coupled-multiplex-digtal-RPA-CRISPR/Cas12a (TCMDC)。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2025-02-01 Epub Date: 2024-11-06 DOI:10.1016/j.talanta.2024.127162
Jianjian Zhuang, Hong Jiang, Jiang Lou, Yu Zhang
{"title":"用于表皮生长因子受体突变检测的 TtAgo-coupled-multiplex-digtal-RPA-CRISPR/Cas12a (TCMDC)。","authors":"Jianjian Zhuang, Hong Jiang, Jiang Lou, Yu Zhang","doi":"10.1016/j.talanta.2024.127162","DOIUrl":null,"url":null,"abstract":"<p><p>Epidermal Growth Factor Receptor (EGFR) is an important target for the early evaluation, treatment, and postoperative follow-up in non-small cell lung cancer (NSCLC). Current detection technologies suffer from extended detection time and high rate of false positive amplification. Therefore, the development of rapid, highly sensitive and specific detection methods is of great significance for improving the diagnosis and treatment of lung cancer. In this study, we proposed a fast and sensitive detection method termed Thermus thermophilus Argonaute (Ttago)-Coupled-Multiplex-digital-recombinase polymerase amplification (RPA)-Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a (TCMDC) detection method, integrating EGFR mutation template enrichment. Based on the cleavage principle of TtAgo, the wild type (WT) template was enriched under the action of double-guide DNA. Two CRISPR RNAs, not restricted by protospacer adjacent motif (PAM) sites, were introduced to target EGFR genes. By combining RPA with CRISPR-Cas12a, we established a single-pot, ultra-sensitive (1 copy, 0.1 %), and visually detectable method for EGFR detection. We further verified the feasibility of this approach using clinical serum samples from lung cancer patients, achieving rapid (within 1 h) and visual detection of EGFR, thereby presenting a promising clinical tool for the detection of lung cancer.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127162"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TtAgo-coupled-multiplex-digtal-RPA-CRISPR/Cas12a (TCMDC) for EGFR mutations detection.\",\"authors\":\"Jianjian Zhuang, Hong Jiang, Jiang Lou, Yu Zhang\",\"doi\":\"10.1016/j.talanta.2024.127162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epidermal Growth Factor Receptor (EGFR) is an important target for the early evaluation, treatment, and postoperative follow-up in non-small cell lung cancer (NSCLC). Current detection technologies suffer from extended detection time and high rate of false positive amplification. Therefore, the development of rapid, highly sensitive and specific detection methods is of great significance for improving the diagnosis and treatment of lung cancer. In this study, we proposed a fast and sensitive detection method termed Thermus thermophilus Argonaute (Ttago)-Coupled-Multiplex-digital-recombinase polymerase amplification (RPA)-Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a (TCMDC) detection method, integrating EGFR mutation template enrichment. Based on the cleavage principle of TtAgo, the wild type (WT) template was enriched under the action of double-guide DNA. Two CRISPR RNAs, not restricted by protospacer adjacent motif (PAM) sites, were introduced to target EGFR genes. By combining RPA with CRISPR-Cas12a, we established a single-pot, ultra-sensitive (1 copy, 0.1 %), and visually detectable method for EGFR detection. We further verified the feasibility of this approach using clinical serum samples from lung cancer patients, achieving rapid (within 1 h) and visual detection of EGFR, thereby presenting a promising clinical tool for the detection of lung cancer.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"283 \",\"pages\":\"127162\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.127162\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127162","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

表皮生长因子受体(EGFR)是非小细胞肺癌(NSCLC)早期评估、治疗和术后随访的重要靶点。目前的检测技术存在检测时间长、假阳性扩增率高等问题。因此,开发快速、高灵敏度和特异性的检测方法对改善肺癌的诊断和治疗具有重要意义。在这项研究中,我们提出了一种快速、灵敏的检测方法,即嗜热菌Argonaute(Ttago)-耦合多聚酶聚合酶扩增(RPA)-聚类规律性间隔短回文重复序列(CRISPR)/Cas12a(TCMDC)检测方法,并将EGFR突变模板富集整合在一起。根据 TtAgo 的裂解原理,野生型(WT)模板在双导 DNA 的作用下被富集。两个不受原位相邻基序(PAM)位点限制的CRISPR RNA被引入靶向表皮生长因子受体(EGFR)基因。通过将 RPA 与 CRISPR-Cas12a 结合,我们建立了一种单锅、超灵敏(1 个拷贝,0.1%)、可目测的表皮生长因子受体检测方法。我们利用肺癌患者的临床血清样本进一步验证了这种方法的可行性,实现了对表皮生长因子受体的快速(1 小时内)和可视检测,从而为检测肺癌提供了一种前景广阔的临床工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TtAgo-coupled-multiplex-digtal-RPA-CRISPR/Cas12a (TCMDC) for EGFR mutations detection.

Epidermal Growth Factor Receptor (EGFR) is an important target for the early evaluation, treatment, and postoperative follow-up in non-small cell lung cancer (NSCLC). Current detection technologies suffer from extended detection time and high rate of false positive amplification. Therefore, the development of rapid, highly sensitive and specific detection methods is of great significance for improving the diagnosis and treatment of lung cancer. In this study, we proposed a fast and sensitive detection method termed Thermus thermophilus Argonaute (Ttago)-Coupled-Multiplex-digital-recombinase polymerase amplification (RPA)-Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a (TCMDC) detection method, integrating EGFR mutation template enrichment. Based on the cleavage principle of TtAgo, the wild type (WT) template was enriched under the action of double-guide DNA. Two CRISPR RNAs, not restricted by protospacer adjacent motif (PAM) sites, were introduced to target EGFR genes. By combining RPA with CRISPR-Cas12a, we established a single-pot, ultra-sensitive (1 copy, 0.1 %), and visually detectable method for EGFR detection. We further verified the feasibility of this approach using clinical serum samples from lung cancer patients, achieving rapid (within 1 h) and visual detection of EGFR, thereby presenting a promising clinical tool for the detection of lung cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Retraction Notice to "Fabrication of a novel sensor based on Cu quantum dot and SH-SiO2 nanoparticles supported on copper-based metal organic framework (Cu QD-SH-SiO2@Cu-MOF) and its application for the simultaneous determination of norepinephrine, piroxicam and epinephrine" [Talanta 252 (2023) 123776]. An innovative fluorescent probe for monitoring of ONOO- in multiple liver-injury models. Aptamer-functionalized magnetic blade spray coupled with a nucleic acid dye-based mass tag strategy for miniature mass spectrometry analysis of endoglin. Design and synthesis of esterase-activated fluorescent probe for diagnosis and surgical guidance of liver cancer. Exploring the role of graphene-metal hybrid nanomaterials as Raman signal enhancers in early stage cancer detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1