{"title":"揭示烷基没食子酸酯的抗氧化特性:通过量子化学计算和分子对接的新方法。","authors":"Nihat Karakuş","doi":"10.1007/s00894-024-06196-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>This study investigates the antioxidant potential of alkyl gallates (C1-C10), focusing on the impact of alkyl chain length and solvent polarity on their antioxidant properties. Known for their biomedical relevance in mitigating oxidative stress, alkyl gallates' structure–activity relationships, particularly regarding chain length and environmental factors, still need to be explored. Key thermochemical parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton affinity (PA), and electron transfer enthalpy (ETE), reveal that shorter alkyl chains (C1-C4) exhibit superior antioxidant activity. In contrast, longer chains (C5-C10) show reduced effectiveness due to steric hindrance and lower solubility in polar solvents. Molecular docking studies also demonstrated favorable binding interactions with vital biological targets, further reinforcing their antioxidant potential.</p><h3>Methods</h3><p>Quantum chemical calculations were performed using Gaussian 16 with the B3LYP/6-311G(dp) basis set for geometry optimizations. Solvent effects were modeled using the integral equation formalism-polarized continuum model (IEF-PCM). Molecular docking studies were conducted using AutoDockTools 4.2, targeting Tyrosine Kinase Hck, Heme Oxygenase, and Human Serum Albumin to evaluate fundamental binding interactions. These computational methods provided insights into alkyl gallates' chemical reactivity and antioxidant efficiency, allowing for the rational design of more potent antioxidant compounds.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the antioxidant properties of alkyl gallates: a novel approach through quantum chemical calculations and molecular docking\",\"authors\":\"Nihat Karakuş\",\"doi\":\"10.1007/s00894-024-06196-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>This study investigates the antioxidant potential of alkyl gallates (C1-C10), focusing on the impact of alkyl chain length and solvent polarity on their antioxidant properties. Known for their biomedical relevance in mitigating oxidative stress, alkyl gallates' structure–activity relationships, particularly regarding chain length and environmental factors, still need to be explored. Key thermochemical parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton affinity (PA), and electron transfer enthalpy (ETE), reveal that shorter alkyl chains (C1-C4) exhibit superior antioxidant activity. In contrast, longer chains (C5-C10) show reduced effectiveness due to steric hindrance and lower solubility in polar solvents. Molecular docking studies also demonstrated favorable binding interactions with vital biological targets, further reinforcing their antioxidant potential.</p><h3>Methods</h3><p>Quantum chemical calculations were performed using Gaussian 16 with the B3LYP/6-311G(dp) basis set for geometry optimizations. Solvent effects were modeled using the integral equation formalism-polarized continuum model (IEF-PCM). Molecular docking studies were conducted using AutoDockTools 4.2, targeting Tyrosine Kinase Hck, Heme Oxygenase, and Human Serum Albumin to evaluate fundamental binding interactions. These computational methods provided insights into alkyl gallates' chemical reactivity and antioxidant efficiency, allowing for the rational design of more potent antioxidant compounds.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"30 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06196-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06196-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Revealing the antioxidant properties of alkyl gallates: a novel approach through quantum chemical calculations and molecular docking
Context
This study investigates the antioxidant potential of alkyl gallates (C1-C10), focusing on the impact of alkyl chain length and solvent polarity on their antioxidant properties. Known for their biomedical relevance in mitigating oxidative stress, alkyl gallates' structure–activity relationships, particularly regarding chain length and environmental factors, still need to be explored. Key thermochemical parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton affinity (PA), and electron transfer enthalpy (ETE), reveal that shorter alkyl chains (C1-C4) exhibit superior antioxidant activity. In contrast, longer chains (C5-C10) show reduced effectiveness due to steric hindrance and lower solubility in polar solvents. Molecular docking studies also demonstrated favorable binding interactions with vital biological targets, further reinforcing their antioxidant potential.
Methods
Quantum chemical calculations were performed using Gaussian 16 with the B3LYP/6-311G(dp) basis set for geometry optimizations. Solvent effects were modeled using the integral equation formalism-polarized continuum model (IEF-PCM). Molecular docking studies were conducted using AutoDockTools 4.2, targeting Tyrosine Kinase Hck, Heme Oxygenase, and Human Serum Albumin to evaluate fundamental binding interactions. These computational methods provided insights into alkyl gallates' chemical reactivity and antioxidant efficiency, allowing for the rational design of more potent antioxidant compounds.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.