Beatriz H D Panariello, Giovanna C Denucci, Caroline C Tonon, George J Eckert, Lukasz Witek, Vasudev V Nayak, Paulo G Coelho, Simone Duarte
{"title":"组织安全的低温等离子处理技术,用于有效处理钛表面成熟的种植体周围炎生物膜。","authors":"Beatriz H D Panariello, Giovanna C Denucci, Caroline C Tonon, George J Eckert, Lukasz Witek, Vasudev V Nayak, Paulo G Coelho, Simone Duarte","doi":"10.1021/acsbiomaterials.4c01413","DOIUrl":null,"url":null,"abstract":"<p><p>The unique screw-shape design and microstructure of implants pose a challenge for mechanical debridement in removing biofilms. Biofilms exhibit increased resistance to antimicrobials relative to single planktonic cells, emphasizing the need for effective biofilm removal during periodontal therapy for peri-implantitis treatment. To tackle this issue, our team evaluated the effectiveness of low-temperature plasma (LTP) for disinfecting titanium discs contaminated with multispecies biofilms associated with peri-implantitis, specifically focusing on biofilms matured for 14 and 21 days as well as biofilms that had formed on Straumann<sup>Ⓡ</sup> Ti-SLA implants for 21 days. The biofilms included <i>Actinomyces naeslundii</i>, <i>Porphyromonas gingivalis</i>, <i>Streptococcus oralis</i>, and <i>Veillonella dispar</i>, which were grown in anaerobic conditions. These biofilms were subjected to LTP treatment for 1, 3, and 5 min, using distances of 3 or 10 mm from the LTP nozzle to the samples. Control groups included biofilms formed on Ti discs or implants that received no treatment, exposure to argon flow at 3 or 10 mm of distance for 1, 3, or 5 min, application for 1 min of 14 μg/mL amoxicillin, 140 μg/mL metronidazole, or a blend of both, and treatment with 0.12% chlorhexidine (CHX) for 1 min. For the implants, 21-day-old biofilms were treated with 0.12% CHX 0.12% for 1 min and LTP for 1 min at a distance of 3 mm for each quadrant. Biofilm viability was assessed through bacterial counting and confocal laser scanning microscopy. The impact of LTP was investigated on reconstituted oral epithelia (ROE) contaminated with <i>P. gingivalis</i>, evaluating cytotoxicity, cell viability, and histology. The results showed that a 1 min exposure to LTP at distances of 3 or 10 mm significantly lowered bacterial counts on implants and discs compared to the untreated controls (<i>p</i> < 0.017). LTP exposure yielded lower levels of cytotoxicity relative to the untreated contaminated control after 12 h of contamination (<i>p</i> = 0.038), and cell viability was not affected by LTP (<i>p</i> ≥ 0.05); thus, LTP-treated samples were shown to be safe for tissue applications, with low cytotoxicity and elevated cell viability post-treatment, and these results were validated by qualitative histological analysis. In conclusion, the study's results support the effectiveness of 1 min LTP exposure in successfully disinfecting mature peri-implantitis multispecies biofilms on titanium discs and implants. Moreover, it validated the safety of LTP on ROE, suggesting its potential as an adjunctive treatment for peri-implantitis.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tissue-Safe Low-Temperature Plasma Treatment for Effective Management of Mature Peri-Implantitis Biofilms on Titanium Surfaces.\",\"authors\":\"Beatriz H D Panariello, Giovanna C Denucci, Caroline C Tonon, George J Eckert, Lukasz Witek, Vasudev V Nayak, Paulo G Coelho, Simone Duarte\",\"doi\":\"10.1021/acsbiomaterials.4c01413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The unique screw-shape design and microstructure of implants pose a challenge for mechanical debridement in removing biofilms. Biofilms exhibit increased resistance to antimicrobials relative to single planktonic cells, emphasizing the need for effective biofilm removal during periodontal therapy for peri-implantitis treatment. To tackle this issue, our team evaluated the effectiveness of low-temperature plasma (LTP) for disinfecting titanium discs contaminated with multispecies biofilms associated with peri-implantitis, specifically focusing on biofilms matured for 14 and 21 days as well as biofilms that had formed on Straumann<sup>Ⓡ</sup> Ti-SLA implants for 21 days. The biofilms included <i>Actinomyces naeslundii</i>, <i>Porphyromonas gingivalis</i>, <i>Streptococcus oralis</i>, and <i>Veillonella dispar</i>, which were grown in anaerobic conditions. These biofilms were subjected to LTP treatment for 1, 3, and 5 min, using distances of 3 or 10 mm from the LTP nozzle to the samples. Control groups included biofilms formed on Ti discs or implants that received no treatment, exposure to argon flow at 3 or 10 mm of distance for 1, 3, or 5 min, application for 1 min of 14 μg/mL amoxicillin, 140 μg/mL metronidazole, or a blend of both, and treatment with 0.12% chlorhexidine (CHX) for 1 min. For the implants, 21-day-old biofilms were treated with 0.12% CHX 0.12% for 1 min and LTP for 1 min at a distance of 3 mm for each quadrant. Biofilm viability was assessed through bacterial counting and confocal laser scanning microscopy. The impact of LTP was investigated on reconstituted oral epithelia (ROE) contaminated with <i>P. gingivalis</i>, evaluating cytotoxicity, cell viability, and histology. The results showed that a 1 min exposure to LTP at distances of 3 or 10 mm significantly lowered bacterial counts on implants and discs compared to the untreated controls (<i>p</i> < 0.017). LTP exposure yielded lower levels of cytotoxicity relative to the untreated contaminated control after 12 h of contamination (<i>p</i> = 0.038), and cell viability was not affected by LTP (<i>p</i> ≥ 0.05); thus, LTP-treated samples were shown to be safe for tissue applications, with low cytotoxicity and elevated cell viability post-treatment, and these results were validated by qualitative histological analysis. In conclusion, the study's results support the effectiveness of 1 min LTP exposure in successfully disinfecting mature peri-implantitis multispecies biofilms on titanium discs and implants. Moreover, it validated the safety of LTP on ROE, suggesting its potential as an adjunctive treatment for peri-implantitis.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c01413\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01413","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Tissue-Safe Low-Temperature Plasma Treatment for Effective Management of Mature Peri-Implantitis Biofilms on Titanium Surfaces.
The unique screw-shape design and microstructure of implants pose a challenge for mechanical debridement in removing biofilms. Biofilms exhibit increased resistance to antimicrobials relative to single planktonic cells, emphasizing the need for effective biofilm removal during periodontal therapy for peri-implantitis treatment. To tackle this issue, our team evaluated the effectiveness of low-temperature plasma (LTP) for disinfecting titanium discs contaminated with multispecies biofilms associated with peri-implantitis, specifically focusing on biofilms matured for 14 and 21 days as well as biofilms that had formed on StraumannⓇ Ti-SLA implants for 21 days. The biofilms included Actinomyces naeslundii, Porphyromonas gingivalis, Streptococcus oralis, and Veillonella dispar, which were grown in anaerobic conditions. These biofilms were subjected to LTP treatment for 1, 3, and 5 min, using distances of 3 or 10 mm from the LTP nozzle to the samples. Control groups included biofilms formed on Ti discs or implants that received no treatment, exposure to argon flow at 3 or 10 mm of distance for 1, 3, or 5 min, application for 1 min of 14 μg/mL amoxicillin, 140 μg/mL metronidazole, or a blend of both, and treatment with 0.12% chlorhexidine (CHX) for 1 min. For the implants, 21-day-old biofilms were treated with 0.12% CHX 0.12% for 1 min and LTP for 1 min at a distance of 3 mm for each quadrant. Biofilm viability was assessed through bacterial counting and confocal laser scanning microscopy. The impact of LTP was investigated on reconstituted oral epithelia (ROE) contaminated with P. gingivalis, evaluating cytotoxicity, cell viability, and histology. The results showed that a 1 min exposure to LTP at distances of 3 or 10 mm significantly lowered bacterial counts on implants and discs compared to the untreated controls (p < 0.017). LTP exposure yielded lower levels of cytotoxicity relative to the untreated contaminated control after 12 h of contamination (p = 0.038), and cell viability was not affected by LTP (p ≥ 0.05); thus, LTP-treated samples were shown to be safe for tissue applications, with low cytotoxicity and elevated cell viability post-treatment, and these results were validated by qualitative histological analysis. In conclusion, the study's results support the effectiveness of 1 min LTP exposure in successfully disinfecting mature peri-implantitis multispecies biofilms on titanium discs and implants. Moreover, it validated the safety of LTP on ROE, suggesting its potential as an adjunctive treatment for peri-implantitis.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture