人类、小鼠和大鼠血清糖蛋白不同的 O-乙酰化模式

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2024-12-06 Epub Date: 2024-11-12 DOI:10.1021/acs.jproteome.4c00653
Didi Liu, Yue Xue, Dan Ding, Bojing Zhu, Jiechen Shen, Zhehui Jin, Shisheng Sun
{"title":"人类、小鼠和大鼠血清糖蛋白不同的 O-乙酰化模式","authors":"Didi Liu, Yue Xue, Dan Ding, Bojing Zhu, Jiechen Shen, Zhehui Jin, Shisheng Sun","doi":"10.1021/acs.jproteome.4c00653","DOIUrl":null,"url":null,"abstract":"<p><p><i>O</i>-Acetylation is a significant chemical modification of sialic acids on glycoproteins with diverse biological functions. As two important animal models, mice and rats have been widely used for various biomedical studies. In this study, we show that the sialic acid types and their <i>O</i>-acetylation patterns have large differences among serum glycoproteins of humans, rats, and mice. Based on intact <i>N</i>-glycopeptide analyses, all sialoglycopeptides in human sera were modified by Neu5Ac without any <i>O</i>-acetylation; 90% of sialoglycopeptides in rat sera were also modified by Neu5Ac, with more than 60% that were further <i>O</i>-acetylated. In contrast, 99% of sialoglycopeptides in mouse sera contained Neu5Gc including 12% in <i>O</i>-acetylated forms. Among all <i>O</i>-acetylated <i>N</i>-glycans, rat sera had hybrid glycans fivefold those of mouse sera, while mouse sera contained 5.5-fold core-fucosylated glycans and 4.6-31.5-fold mono-/penta-/hexa-antenna glycans compared to mice. The overall <i>O</i>-acetylation proportions of serum glycoproteins in rats were much higher than those in mice, and diverse <i>O</i>-acetylation proportions also commonly existed at different glycosites of the same glycoproteins. This study enhances our understanding of <i>O</i>-acetylated sialoglycan diversities and underscores the necessity of considering glycosylation profiles when selecting suitable animal models for various biomedical studies.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"5511-5519"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct <i>O</i>-Acetylation Patterns of Serum Glycoproteins among Humans, Mice, and Rats.\",\"authors\":\"Didi Liu, Yue Xue, Dan Ding, Bojing Zhu, Jiechen Shen, Zhehui Jin, Shisheng Sun\",\"doi\":\"10.1021/acs.jproteome.4c00653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>O</i>-Acetylation is a significant chemical modification of sialic acids on glycoproteins with diverse biological functions. As two important animal models, mice and rats have been widely used for various biomedical studies. In this study, we show that the sialic acid types and their <i>O</i>-acetylation patterns have large differences among serum glycoproteins of humans, rats, and mice. Based on intact <i>N</i>-glycopeptide analyses, all sialoglycopeptides in human sera were modified by Neu5Ac without any <i>O</i>-acetylation; 90% of sialoglycopeptides in rat sera were also modified by Neu5Ac, with more than 60% that were further <i>O</i>-acetylated. In contrast, 99% of sialoglycopeptides in mouse sera contained Neu5Gc including 12% in <i>O</i>-acetylated forms. Among all <i>O</i>-acetylated <i>N</i>-glycans, rat sera had hybrid glycans fivefold those of mouse sera, while mouse sera contained 5.5-fold core-fucosylated glycans and 4.6-31.5-fold mono-/penta-/hexa-antenna glycans compared to mice. The overall <i>O</i>-acetylation proportions of serum glycoproteins in rats were much higher than those in mice, and diverse <i>O</i>-acetylation proportions also commonly existed at different glycosites of the same glycoproteins. This study enhances our understanding of <i>O</i>-acetylated sialoglycan diversities and underscores the necessity of considering glycosylation profiles when selecting suitable animal models for various biomedical studies.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"5511-5519\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00653\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00653","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

O-乙酰化是糖蛋白上硅酸的一种重要化学修饰,具有多种生物学功能。作为两种重要的动物模型,小鼠和大鼠已被广泛用于各种生物医学研究。在这项研究中,我们发现人、大鼠和小鼠血清糖蛋白中的硅酸类型及其 O-乙酰化模式存在很大差异。根据完整的 N-糖肽分析,人类血清中所有的硅糖肽都被 Neu5Ac 修饰,没有任何 O-乙酰化;大鼠血清中 90% 的硅糖肽也被 Neu5Ac 修饰,其中超过 60% 的硅糖肽被进一步 O-乙酰化。相比之下,小鼠血清中 99% 的ialoglycopeptides 含有 Neu5Gc,其中 12% 为 O-乙酰化形式。在所有 O-乙酰化的 N-聚糖中,大鼠血清中的杂交聚糖是小鼠血清的 5 倍,而小鼠血清中的核心-岩藻糖基化聚糖是大鼠血清的 5.5 倍,单/五/六触角聚糖是小鼠血清的 4.6-31.5 倍。大鼠血清糖蛋白的总体 O-乙酰化比例远高于小鼠,而且同一糖蛋白的不同聚糖也普遍存在不同的 O-乙酰化比例。这项研究加深了我们对 O-乙酰化硅聚糖多样性的理解,并强调了在选择合适的动物模型进行各种生物医学研究时考虑糖基化特征的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distinct O-Acetylation Patterns of Serum Glycoproteins among Humans, Mice, and Rats.

O-Acetylation is a significant chemical modification of sialic acids on glycoproteins with diverse biological functions. As two important animal models, mice and rats have been widely used for various biomedical studies. In this study, we show that the sialic acid types and their O-acetylation patterns have large differences among serum glycoproteins of humans, rats, and mice. Based on intact N-glycopeptide analyses, all sialoglycopeptides in human sera were modified by Neu5Ac without any O-acetylation; 90% of sialoglycopeptides in rat sera were also modified by Neu5Ac, with more than 60% that were further O-acetylated. In contrast, 99% of sialoglycopeptides in mouse sera contained Neu5Gc including 12% in O-acetylated forms. Among all O-acetylated N-glycans, rat sera had hybrid glycans fivefold those of mouse sera, while mouse sera contained 5.5-fold core-fucosylated glycans and 4.6-31.5-fold mono-/penta-/hexa-antenna glycans compared to mice. The overall O-acetylation proportions of serum glycoproteins in rats were much higher than those in mice, and diverse O-acetylation proportions also commonly existed at different glycosites of the same glycoproteins. This study enhances our understanding of O-acetylated sialoglycan diversities and underscores the necessity of considering glycosylation profiles when selecting suitable animal models for various biomedical studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
Extracellular Vesicle-Driven Crosstalk between Legume Plants and Rhizobia: The Peribacteroid Space of Symbiosomes as a Protein Trafficking Interface. N-Terminal Proteomics Reveals Distinct Protein Degradation Patterns in Different Types of Human Atherosclerotic Plaques. Proteome-Wide Analysis of Antibody Responses in Asymptomatic Omicron BA.2-Infected Individuals at the Amino Acid Resolution. Proteomic Insights into the Regulatory Role of CobQ Deacetylase in Aeromonas hydrophila. Intact Mass Proteomics Using a Proteoform Atlas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1