用于增强铁中毒疗法的超分子自组装纳米药物

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-11-14 DOI:10.1021/acsnano.4c09254
Zhengwei Yu, Xin Xie, Qing Li, Yong Huang, Siqin Chen, Wentao Song, Jianwu Tian, Zhiyao Li, Chongzhi Wu, Bowen Li
{"title":"用于增强铁中毒疗法的超分子自组装纳米药物","authors":"Zhengwei Yu, Xin Xie, Qing Li, Yong Huang, Siqin Chen, Wentao Song, Jianwu Tian, Zhiyao Li, Chongzhi Wu, Bowen Li","doi":"10.1021/acsnano.4c09254","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis can induce cell death that leverages Fe<sup>2+</sup>-triggered Fenton reactions within living organisms, leading to an excessive accumulation of lipid peroxides (LPOs) and inducing cell death. Ferroptosis can effectively circumvent the inevitable drug resistance encountered with traditional apoptotic therapies. However, several issues remain in the clinical application of ferroptosis anticancer therapy, primarily due to the poor efficiency of intracellular Fenton reaction. To address this issue, we developed a supramolecular self-assembled codelivery nanoprodrug (DOX@C18Fc-Q[7] NPs) composed of ferrocene (Fc)-based supramolecular amphiphiles (C18Fc-Q[7]) and a nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) activator (doxorubicin, DOX). The C18Fc-Q[7] is based on Fc linked to a hydrophobic long-chain alkane via a disulfide linkage, which interacts with hydrophilic Q[7] to form self-assembled amphiphiles. Importantly, the host-guest interaction between Q[7] and Fc effectively enhances the solubility of Fc while maintaining the stability of the Fe<sup>2+</sup> source. Moreover, C18Fc-Q[7] also acts as a good carrier for loading DOX due to its good self-assembly. In cancer cells, elevated glutathione (GSH) triggers the disassembly of nanoprodrug, leading to the release of DOX, which upregulates NOX4 expression and increases H<sub>2</sub>O<sub>2</sub> level, thereby promoting an efficient Fenton reaction for Fc-induced ferroptosis. Moreover, DOX induces cell death through apoptosis, providing a synergistic effect to further enhance the ferroptosis therapy. <i>In vivo</i> studies have demonstrated that this enhanced ferroptosis therapy effectively inhibits tumor growth and metastasis while maintaining good biosafety.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Supramolecular Self-Assembled Nanoprodrug for Enhanced Ferroptosis Therapy.\",\"authors\":\"Zhengwei Yu, Xin Xie, Qing Li, Yong Huang, Siqin Chen, Wentao Song, Jianwu Tian, Zhiyao Li, Chongzhi Wu, Bowen Li\",\"doi\":\"10.1021/acsnano.4c09254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis can induce cell death that leverages Fe<sup>2+</sup>-triggered Fenton reactions within living organisms, leading to an excessive accumulation of lipid peroxides (LPOs) and inducing cell death. Ferroptosis can effectively circumvent the inevitable drug resistance encountered with traditional apoptotic therapies. However, several issues remain in the clinical application of ferroptosis anticancer therapy, primarily due to the poor efficiency of intracellular Fenton reaction. To address this issue, we developed a supramolecular self-assembled codelivery nanoprodrug (DOX@C18Fc-Q[7] NPs) composed of ferrocene (Fc)-based supramolecular amphiphiles (C18Fc-Q[7]) and a nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) activator (doxorubicin, DOX). The C18Fc-Q[7] is based on Fc linked to a hydrophobic long-chain alkane via a disulfide linkage, which interacts with hydrophilic Q[7] to form self-assembled amphiphiles. Importantly, the host-guest interaction between Q[7] and Fc effectively enhances the solubility of Fc while maintaining the stability of the Fe<sup>2+</sup> source. Moreover, C18Fc-Q[7] also acts as a good carrier for loading DOX due to its good self-assembly. In cancer cells, elevated glutathione (GSH) triggers the disassembly of nanoprodrug, leading to the release of DOX, which upregulates NOX4 expression and increases H<sub>2</sub>O<sub>2</sub> level, thereby promoting an efficient Fenton reaction for Fc-induced ferroptosis. Moreover, DOX induces cell death through apoptosis, providing a synergistic effect to further enhance the ferroptosis therapy. <i>In vivo</i> studies have demonstrated that this enhanced ferroptosis therapy effectively inhibits tumor growth and metastasis while maintaining good biosafety.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09254\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09254","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁凋亡可利用生物体内由 Fe2+ 触发的芬顿反应诱导细胞死亡,导致脂质过氧化物(LPO)过度积累并诱导细胞死亡。铁凋亡可有效规避传统凋亡疗法不可避免的耐药性问题。然而,铁氧体抗癌疗法在临床应用中仍存在一些问题,主要是由于细胞内芬顿反应的效率较低。为了解决这个问题,我们开发了一种超分子自组装编码递送纳米药物(DOX@C18Fc-Q[7] NPs),由二茂铁(Fc)基超分子双亲化合物(C18Fc-Q[7])和烟酰胺腺嘌呤二核苷酸磷酸氧化酶 4(NOX4)激活剂(多柔比星,DOX)组成。C18Fc-Q[7] 的基础是 Fc 通过二硫键与疏水性长链烷烃连接,后者与亲水性 Q[7] 相互作用,形成自组装的两亲化合物。重要的是,Q[7]和 Fc 之间的主客相互作用有效地提高了 Fc 的溶解度,同时保持了 Fe2+ 源的稳定性。此外,C18Fc-Q[7]还因其良好的自组装性而成为装载 DOX 的良好载体。在癌细胞中,谷胱甘肽(GSH)的升高会引发纳米药物的解体,导致 DOX 的释放,而 DOX 会上调 NOX4 的表达并增加 H2O2 的水平,从而促进 Fc 诱导的铁凋亡的高效芬顿反应。此外,DOX 还能通过细胞凋亡诱导细胞死亡,从而产生协同效应,进一步提高铁中毒疗法的效果。体内研究表明,这种增强型铁氧化疗法能有效抑制肿瘤生长和转移,同时保持良好的生物安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Supramolecular Self-Assembled Nanoprodrug for Enhanced Ferroptosis Therapy.

Ferroptosis can induce cell death that leverages Fe2+-triggered Fenton reactions within living organisms, leading to an excessive accumulation of lipid peroxides (LPOs) and inducing cell death. Ferroptosis can effectively circumvent the inevitable drug resistance encountered with traditional apoptotic therapies. However, several issues remain in the clinical application of ferroptosis anticancer therapy, primarily due to the poor efficiency of intracellular Fenton reaction. To address this issue, we developed a supramolecular self-assembled codelivery nanoprodrug (DOX@C18Fc-Q[7] NPs) composed of ferrocene (Fc)-based supramolecular amphiphiles (C18Fc-Q[7]) and a nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) activator (doxorubicin, DOX). The C18Fc-Q[7] is based on Fc linked to a hydrophobic long-chain alkane via a disulfide linkage, which interacts with hydrophilic Q[7] to form self-assembled amphiphiles. Importantly, the host-guest interaction between Q[7] and Fc effectively enhances the solubility of Fc while maintaining the stability of the Fe2+ source. Moreover, C18Fc-Q[7] also acts as a good carrier for loading DOX due to its good self-assembly. In cancer cells, elevated glutathione (GSH) triggers the disassembly of nanoprodrug, leading to the release of DOX, which upregulates NOX4 expression and increases H2O2 level, thereby promoting an efficient Fenton reaction for Fc-induced ferroptosis. Moreover, DOX induces cell death through apoptosis, providing a synergistic effect to further enhance the ferroptosis therapy. In vivo studies have demonstrated that this enhanced ferroptosis therapy effectively inhibits tumor growth and metastasis while maintaining good biosafety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Multifunctional Microneedle Patches for Perivascular Gene Delivery and Treatment of Vascular Intimal Hyperplasia Peroxynitrite-Free Nitric Oxide-Embedded Nanoparticles Maintain Nitric Oxide Homeostasis for Effective Revascularization of Myocardial Infarcts Recent Advances of Stimuli-Responsive Liquid–Liquid Interfaces Stabilized by Nanoparticles Correction to "Antitumor Effect by Hydroxyapatite Nanospheres: Activation of Mitochondria-Dependent Apoptosis and Negative Regulation of Phosphatidylinositol-3-Kinase/Protein Kinase B Pathway". Giant Modulation of Second-Harmonic Generation in CuInP2S6 by Interfacing with MoS2 Atomic Layers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1