{"title":"利用综合临床和遗传指标的新型模型预测新发糖尿病队列中的胰腺癌:大规模前瞻性队列研究》。","authors":"Yongji Sun, Chaowen Hu, Sien Hu, Hongxia Xu, Jiali Gong, Yixuan Wu, Yiqun Fan, Changming Lv, Tianyu Song, Jianyao Lou, Kai Zhang, Jian Wu, Xiawei Li, Yulian Wu","doi":"10.1002/cam4.70388","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>Individuals who develop new-onset diabetes have been identified as a high-risk cohort for pancreatic cancer (PC), exhibiting an incidence rate nearly 8 times higher than the general population. Hence, the targeted screening of this specific cohort presents a promising opportunity for early pancreatic cancer detection. We aimed to develop and validate a novel model capable of identifying high-risk individuals among those with new-onset diabetes.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Employing the UK Biobank cohort, we focused on those developing new-onset diabetes during follow-up. Genetic and clinical characteristics available at registration were considered as candidate predictors. We conducted univariate regression analysis to identify potential indicators and used a 5-fold cross-validation method to select optimal predictors for model development. Five machine learning algorithms were used for model development.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Among 12,735 patients with new-onset diabetes, 100 (0.8%) were diagnosed with PC within 2 years. The final model (area under the curve, 0.897; 95% confidence interval, 0.865–0.929) included 5 clinical predictors and 24 single nucleotide polymorphisms. Two threshold cut-offs were established: 1.28% and 5.26%. The recommended 1.28% cut-off, based on model performance, reduces definitive testing to 13% of the total population while capturing 76% of PC cases. The high-risk threshold is 5.26%. Utilizing this threshold, only 2% of the population needs definitive testing, capturing nearly half of PC cases.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We, for the first time, combined clinical and genetic data to develop and validate a model to determine the risk of pancreatic cancer in patients with new-onset diabetes using machine learning algorithms. By reducing the number of unnecessary tests while ensuring that a substantial proportion of high-risk patients are identified, this tool has the potential to improve patient outcomes and optimize healthcare sources.</p>\n </section>\n </div>","PeriodicalId":139,"journal":{"name":"Cancer Medicine","volume":"13 21","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551786/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting Pancreatic Cancer in New-Onset Diabetes Cohort Using a Novel Model With Integrated Clinical and Genetic Indicators: A Large-Scale Prospective Cohort Study\",\"authors\":\"Yongji Sun, Chaowen Hu, Sien Hu, Hongxia Xu, Jiali Gong, Yixuan Wu, Yiqun Fan, Changming Lv, Tianyu Song, Jianyao Lou, Kai Zhang, Jian Wu, Xiawei Li, Yulian Wu\",\"doi\":\"10.1002/cam4.70388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Introduction</h3>\\n \\n <p>Individuals who develop new-onset diabetes have been identified as a high-risk cohort for pancreatic cancer (PC), exhibiting an incidence rate nearly 8 times higher than the general population. Hence, the targeted screening of this specific cohort presents a promising opportunity for early pancreatic cancer detection. We aimed to develop and validate a novel model capable of identifying high-risk individuals among those with new-onset diabetes.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Employing the UK Biobank cohort, we focused on those developing new-onset diabetes during follow-up. Genetic and clinical characteristics available at registration were considered as candidate predictors. We conducted univariate regression analysis to identify potential indicators and used a 5-fold cross-validation method to select optimal predictors for model development. Five machine learning algorithms were used for model development.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Among 12,735 patients with new-onset diabetes, 100 (0.8%) were diagnosed with PC within 2 years. The final model (area under the curve, 0.897; 95% confidence interval, 0.865–0.929) included 5 clinical predictors and 24 single nucleotide polymorphisms. Two threshold cut-offs were established: 1.28% and 5.26%. The recommended 1.28% cut-off, based on model performance, reduces definitive testing to 13% of the total population while capturing 76% of PC cases. The high-risk threshold is 5.26%. Utilizing this threshold, only 2% of the population needs definitive testing, capturing nearly half of PC cases.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>We, for the first time, combined clinical and genetic data to develop and validate a model to determine the risk of pancreatic cancer in patients with new-onset diabetes using machine learning algorithms. By reducing the number of unnecessary tests while ensuring that a substantial proportion of high-risk patients are identified, this tool has the potential to improve patient outcomes and optimize healthcare sources.</p>\\n </section>\\n </div>\",\"PeriodicalId\":139,\"journal\":{\"name\":\"Cancer Medicine\",\"volume\":\"13 21\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551786/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cam4.70388\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cam4.70388","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Predicting Pancreatic Cancer in New-Onset Diabetes Cohort Using a Novel Model With Integrated Clinical and Genetic Indicators: A Large-Scale Prospective Cohort Study
Introduction
Individuals who develop new-onset diabetes have been identified as a high-risk cohort for pancreatic cancer (PC), exhibiting an incidence rate nearly 8 times higher than the general population. Hence, the targeted screening of this specific cohort presents a promising opportunity for early pancreatic cancer detection. We aimed to develop and validate a novel model capable of identifying high-risk individuals among those with new-onset diabetes.
Methods
Employing the UK Biobank cohort, we focused on those developing new-onset diabetes during follow-up. Genetic and clinical characteristics available at registration were considered as candidate predictors. We conducted univariate regression analysis to identify potential indicators and used a 5-fold cross-validation method to select optimal predictors for model development. Five machine learning algorithms were used for model development.
Results
Among 12,735 patients with new-onset diabetes, 100 (0.8%) were diagnosed with PC within 2 years. The final model (area under the curve, 0.897; 95% confidence interval, 0.865–0.929) included 5 clinical predictors and 24 single nucleotide polymorphisms. Two threshold cut-offs were established: 1.28% and 5.26%. The recommended 1.28% cut-off, based on model performance, reduces definitive testing to 13% of the total population while capturing 76% of PC cases. The high-risk threshold is 5.26%. Utilizing this threshold, only 2% of the population needs definitive testing, capturing nearly half of PC cases.
Conclusions
We, for the first time, combined clinical and genetic data to develop and validate a model to determine the risk of pancreatic cancer in patients with new-onset diabetes using machine learning algorithms. By reducing the number of unnecessary tests while ensuring that a substantial proportion of high-risk patients are identified, this tool has the potential to improve patient outcomes and optimize healthcare sources.
期刊介绍:
Cancer Medicine is a peer-reviewed, open access, interdisciplinary journal providing rapid publication of research from global biomedical researchers across the cancer sciences. The journal will consider submissions from all oncologic specialties, including, but not limited to, the following areas:
Clinical Cancer Research
Translational research ∙ clinical trials ∙ chemotherapy ∙ radiation therapy ∙ surgical therapy ∙ clinical observations ∙ clinical guidelines ∙ genetic consultation ∙ ethical considerations
Cancer Biology:
Molecular biology ∙ cellular biology ∙ molecular genetics ∙ genomics ∙ immunology ∙ epigenetics ∙ metabolic studies ∙ proteomics ∙ cytopathology ∙ carcinogenesis ∙ drug discovery and delivery.
Cancer Prevention:
Behavioral science ∙ psychosocial studies ∙ screening ∙ nutrition ∙ epidemiology and prevention ∙ community outreach.
Bioinformatics:
Gene expressions profiles ∙ gene regulation networks ∙ genome bioinformatics ∙ pathwayanalysis ∙ prognostic biomarkers.
Cancer Medicine publishes original research articles, systematic reviews, meta-analyses, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented in the paper.