在大鼠模型中,神经节对 tau 过度磷酸化的脆弱性

IF 8 1区 医学 Q1 CELL BIOLOGY Aging Cell Pub Date : 2024-11-09 DOI:10.1111/acel.14405
Tamunotonye Omoluabi, Zia Hasan, Jessie E Piche, Abeni R S Flynn, Jules J E Doré, Susan G Walling, Andrew C W Weeks, Touati Benoukraf, Qi Yuan
{"title":"在大鼠模型中,神经节对 tau 过度磷酸化的脆弱性","authors":"Tamunotonye Omoluabi, Zia Hasan, Jessie E Piche, Abeni R S Flynn, Jules J E Doré, Susan G Walling, Andrew C W Weeks, Touati Benoukraf, Qi Yuan","doi":"10.1111/acel.14405","DOIUrl":null,"url":null,"abstract":"<p><p>Post-mortem investigations indicate that the locus coeruleus (LC) is the initial site of hyperphosphorylated pretangle tau, a precursor to neurofibrillary tangles (NFTs) found in Alzheimer's disease (AD). The presence of pretangle tau and NFTs correlates with AD progression and symptomatology. LC neuron integrity and quantity are linked to cognitive performance, with degeneration strongly associated with AD. Despite their importance, the mechanisms of pretangle tau-induced LC degeneration are unclear. This study examined the transcriptomic and mitochondrial profiles of LC noradrenergic neurons after transduction with pseudophosphorylated human tau. Tau hyperphosphorylation increased the somatic expression of the L-type calcium channel (LTCC), impaired mitochondrial health, and led to deficits in spatial and olfactory learning. Sex-dependent alterations in gene expression were observed in rats transduced with pretangle tau. Chronic LTCC blockade prevented behavioral deficits and altered mitochondrial mRNA expression, suggesting a potential link between LTCC hyperactivity and mitochondrial dysfunction. Our research provides insights into the consequences of tau pathology in the originating structure of AD.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14405"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locus coeruleus vulnerability to tau hyperphosphorylation in a rat model.\",\"authors\":\"Tamunotonye Omoluabi, Zia Hasan, Jessie E Piche, Abeni R S Flynn, Jules J E Doré, Susan G Walling, Andrew C W Weeks, Touati Benoukraf, Qi Yuan\",\"doi\":\"10.1111/acel.14405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Post-mortem investigations indicate that the locus coeruleus (LC) is the initial site of hyperphosphorylated pretangle tau, a precursor to neurofibrillary tangles (NFTs) found in Alzheimer's disease (AD). The presence of pretangle tau and NFTs correlates with AD progression and symptomatology. LC neuron integrity and quantity are linked to cognitive performance, with degeneration strongly associated with AD. Despite their importance, the mechanisms of pretangle tau-induced LC degeneration are unclear. This study examined the transcriptomic and mitochondrial profiles of LC noradrenergic neurons after transduction with pseudophosphorylated human tau. Tau hyperphosphorylation increased the somatic expression of the L-type calcium channel (LTCC), impaired mitochondrial health, and led to deficits in spatial and olfactory learning. Sex-dependent alterations in gene expression were observed in rats transduced with pretangle tau. Chronic LTCC blockade prevented behavioral deficits and altered mitochondrial mRNA expression, suggesting a potential link between LTCC hyperactivity and mitochondrial dysfunction. Our research provides insights into the consequences of tau pathology in the originating structure of AD.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14405\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14405\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14405","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

死后研究表明,脑室(LC)是高磷酸化前tau的初始部位,而高磷酸化前tau是阿尔茨海默病(AD)中神经纤维缠结(NFT)的前体。前角蛋白tau和NFTs的存在与阿尔茨海默病的进展和症状相关。LC神经元的完整性和数量与认知能力有关,其退化与阿尔茨海默病密切相关。尽管它们很重要,但角化前tau诱导LC变性的机制尚不清楚。本研究考察了用假磷酸化人tau转导LC去甲肾上腺素能神经元后的转录组和线粒体特征。Tau过度磷酸化增加了L型钙通道(LTCC)的体细胞表达,损害了线粒体健康,并导致空间和嗅觉学习障碍。在转导了pretangle tau的大鼠体内观察到了基因表达的性别依赖性改变。慢性LTCC阻断可防止行为缺陷和线粒体mRNA表达的改变,这表明LTCC亢进与线粒体功能障碍之间存在潜在联系。我们的研究为了解tau病理学在AD起源结构中的后果提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Locus coeruleus vulnerability to tau hyperphosphorylation in a rat model.

Post-mortem investigations indicate that the locus coeruleus (LC) is the initial site of hyperphosphorylated pretangle tau, a precursor to neurofibrillary tangles (NFTs) found in Alzheimer's disease (AD). The presence of pretangle tau and NFTs correlates with AD progression and symptomatology. LC neuron integrity and quantity are linked to cognitive performance, with degeneration strongly associated with AD. Despite their importance, the mechanisms of pretangle tau-induced LC degeneration are unclear. This study examined the transcriptomic and mitochondrial profiles of LC noradrenergic neurons after transduction with pseudophosphorylated human tau. Tau hyperphosphorylation increased the somatic expression of the L-type calcium channel (LTCC), impaired mitochondrial health, and led to deficits in spatial and olfactory learning. Sex-dependent alterations in gene expression were observed in rats transduced with pretangle tau. Chronic LTCC blockade prevented behavioral deficits and altered mitochondrial mRNA expression, suggesting a potential link between LTCC hyperactivity and mitochondrial dysfunction. Our research provides insights into the consequences of tau pathology in the originating structure of AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
期刊最新文献
Plasma Proteomic Signature as a Predictor of Age Advancement in People Living With HIV. Higher Intron Retention Levels in Female Alzheimer's Brains May Be Linked to Disease Prevalence. Cross-tissue comparison of epigenetic aging clocks in humans. Cellular Senescence Contributes to the Dysfunction of Tight Junctions in Submandibular Glands of Aging Mice. Salidroside Improves Oocyte Competence of Reproductively Old Mice by Enhancing Mitophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1