{"title":"NAD(P)-Dependent 葡萄糖脱氢酶:被低估的多功能生物催化剂。","authors":"Guangde Jiang, Rohit Kumar, Samantha J Tambrini","doi":"10.1002/cbic.202400716","DOIUrl":null,"url":null,"abstract":"<p><p>The last decade has witnessed tremendous progress in the field of biocatalysis. One of the most frequently utilized enzymes in diverse biocatalytic applications is NAD(P)-dependent glucose dehydrogenases (GDHs). Traditionally, these enzymes are employed for their role in regenerating NAD(P)H in various enzymatic reactions utilizing glucose. However, recent studies have expanded the scope of GDHs beyond cofactor regeneration, highlighting their potential as biocatalysts in diverse chemical transformations. GDHs have demonstrated versatility in catalyzing key reactions in the synthesis of various drug molecules and intermediates, including ketone reduction to produce alcohols, imine reduction of C=N bonds to yield amines, reduction of aldehydes to alcohols, and dehydrogenation of cyclohexanol derivatives. This review highlights recent advancements in elucidating the multifunctional roles of NAD(P)-dependent glucose dehydrogenases (GDHs) in biocatalysis, with an emphasis on their growing applications and significant potential in small molecule synthesis.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400716"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NAD(P)-Dependent Glucose Dehydrogenases: Underestimated Multifunctional Biocatalysts.\",\"authors\":\"Guangde Jiang, Rohit Kumar, Samantha J Tambrini\",\"doi\":\"10.1002/cbic.202400716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The last decade has witnessed tremendous progress in the field of biocatalysis. One of the most frequently utilized enzymes in diverse biocatalytic applications is NAD(P)-dependent glucose dehydrogenases (GDHs). Traditionally, these enzymes are employed for their role in regenerating NAD(P)H in various enzymatic reactions utilizing glucose. However, recent studies have expanded the scope of GDHs beyond cofactor regeneration, highlighting their potential as biocatalysts in diverse chemical transformations. GDHs have demonstrated versatility in catalyzing key reactions in the synthesis of various drug molecules and intermediates, including ketone reduction to produce alcohols, imine reduction of C=N bonds to yield amines, reduction of aldehydes to alcohols, and dehydrogenation of cyclohexanol derivatives. This review highlights recent advancements in elucidating the multifunctional roles of NAD(P)-dependent glucose dehydrogenases (GDHs) in biocatalysis, with an emphasis on their growing applications and significant potential in small molecule synthesis.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e202400716\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400716\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400716","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The last decade has witnessed tremendous progress in the field of biocatalysis. One of the most frequently utilized enzymes in diverse biocatalytic applications is NAD(P)-dependent glucose dehydrogenases (GDHs). Traditionally, these enzymes are employed for their role in regenerating NAD(P)H in various enzymatic reactions utilizing glucose. However, recent studies have expanded the scope of GDHs beyond cofactor regeneration, highlighting their potential as biocatalysts in diverse chemical transformations. GDHs have demonstrated versatility in catalyzing key reactions in the synthesis of various drug molecules and intermediates, including ketone reduction to produce alcohols, imine reduction of C=N bonds to yield amines, reduction of aldehydes to alcohols, and dehydrogenation of cyclohexanol derivatives. This review highlights recent advancements in elucidating the multifunctional roles of NAD(P)-dependent glucose dehydrogenases (GDHs) in biocatalysis, with an emphasis on their growing applications and significant potential in small molecule synthesis.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).