用于神经形态系统的基于量子点的电阻开关存储器的精确权重调整。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-11-14 DOI:10.1039/d4mh01182a
Gyeongpyo Kim, Doheon Yoo, Hyojin So, Seoyoung Park, Sungjoon Kim, Min-Jae Choi, Sungjun Kim
{"title":"用于神经形态系统的基于量子点的电阻开关存储器的精确权重调整。","authors":"Gyeongpyo Kim, Doheon Yoo, Hyojin So, Seoyoung Park, Sungjoon Kim, Min-Jae Choi, Sungjun Kim","doi":"10.1039/d4mh01182a","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, nonvolatile bipolar resistive switching and synaptic emulation behaviors are performed in an InGaP quantum dots (QDs)/HfO<sub>2</sub>-based memristor device. First, the physical and chemical properties of InGaP QDs are investigated by high-resolution transmission electron microscopy and spectrophotometric analysis. Through comparative experiments, it is proven that the HfO<sub>2</sub> layer improves the variations in resistive switching characteristics. Additionally, the Al/QDs/HfO<sub>2</sub>/ITO device exhibits reversible switching performances with excellent data retention. Fast switching speeds in the order of nanoseconds were confirmed, which could be explained by trapping/detrapping and quantum tunneling effects by the trap provided by nanoscale InGaP QDs. In addition, the operating voltage is decreased when the device is exposed to ultraviolet light for low-power switching. Biological synapse features such as spike-timing-dependent plasticity are emulated for neuromorphic systems. Finally, the incremental step pulse using proven algorithm method enabled the implementation of four-bit states (16 states), markedly enhancing the inference precision of neuromorphic systems.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise weight tuning in quantum dot-based resistive-switching memory for neuromorphic systems.\",\"authors\":\"Gyeongpyo Kim, Doheon Yoo, Hyojin So, Seoyoung Park, Sungjoon Kim, Min-Jae Choi, Sungjun Kim\",\"doi\":\"10.1039/d4mh01182a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, nonvolatile bipolar resistive switching and synaptic emulation behaviors are performed in an InGaP quantum dots (QDs)/HfO<sub>2</sub>-based memristor device. First, the physical and chemical properties of InGaP QDs are investigated by high-resolution transmission electron microscopy and spectrophotometric analysis. Through comparative experiments, it is proven that the HfO<sub>2</sub> layer improves the variations in resistive switching characteristics. Additionally, the Al/QDs/HfO<sub>2</sub>/ITO device exhibits reversible switching performances with excellent data retention. Fast switching speeds in the order of nanoseconds were confirmed, which could be explained by trapping/detrapping and quantum tunneling effects by the trap provided by nanoscale InGaP QDs. In addition, the operating voltage is decreased when the device is exposed to ultraviolet light for low-power switching. Biological synapse features such as spike-timing-dependent plasticity are emulated for neuromorphic systems. Finally, the incremental step pulse using proven algorithm method enabled the implementation of four-bit states (16 states), markedly enhancing the inference precision of neuromorphic systems.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01182a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01182a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究在基于 InGaP 量子点(QDs)/HfO2 的忆阻器器件中实现了非易失性双极电阻开关和突触仿真行为。首先,通过高分辨率透射电子显微镜和分光光度分析研究了 InGaP 量子点的物理和化学特性。通过对比实验证明,HfO2 层改善了电阻开关特性的变化。此外,Al/QDs/HfO2/ITO 器件具有可逆开关性能和出色的数据保持能力。纳米级 InGaP QDs 提供的阱和量子隧穿效应可以解释这种快速开关速度。此外,当器件暴露在紫外线下进行低功耗开关时,工作电压会降低。神经形态系统仿真了生物突触的特征,如依赖于尖峰计时的可塑性。最后,利用经过验证的算法方法,增量阶跃脉冲实现了四位状态(16 个状态),显著提高了神经形态系统的推理精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precise weight tuning in quantum dot-based resistive-switching memory for neuromorphic systems.

In this study, nonvolatile bipolar resistive switching and synaptic emulation behaviors are performed in an InGaP quantum dots (QDs)/HfO2-based memristor device. First, the physical and chemical properties of InGaP QDs are investigated by high-resolution transmission electron microscopy and spectrophotometric analysis. Through comparative experiments, it is proven that the HfO2 layer improves the variations in resistive switching characteristics. Additionally, the Al/QDs/HfO2/ITO device exhibits reversible switching performances with excellent data retention. Fast switching speeds in the order of nanoseconds were confirmed, which could be explained by trapping/detrapping and quantum tunneling effects by the trap provided by nanoscale InGaP QDs. In addition, the operating voltage is decreased when the device is exposed to ultraviolet light for low-power switching. Biological synapse features such as spike-timing-dependent plasticity are emulated for neuromorphic systems. Finally, the incremental step pulse using proven algorithm method enabled the implementation of four-bit states (16 states), markedly enhancing the inference precision of neuromorphic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Using a stable radical as an "electron donor" to develop a radical photosensitizer for efficient type-I photodynamic therapy. Biological metasurfaces based on tailored Luria Bertani Agar growth medium formulations for photonic applications. Hydrogen sulfide-generating semiconducting polymer nanoparticles for amplified radiodynamic-ferroptosis therapy of orthotopic glioblastoma. Targeted and precise drug delivery using a glutathione-responsive ultra-short peptide-based injectable hydrogel as a breast cancer cure. Framing emission gain layers for perovskite light-emitting diodes using polycaprolactone-silver nanoparticles featuring Förster resonance energy transfer and Purcell effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1