Chunyuan Tang, Yi He, Bingzheng Yuan, Libo Li, Lijun Luo, Tianyan You
{"title":"同时检测农产品中的多种霉菌毒素:光学和电化学传感方法的最新进展。","authors":"Chunyuan Tang, Yi He, Bingzheng Yuan, Libo Li, Lijun Luo, Tianyan You","doi":"10.1111/1541-4337.70062","DOIUrl":null,"url":null,"abstract":"<p>Mycotoxin contamination poses serious threats to human and animal health. Food and environmental systems are often simultaneously contaminated with multiple mycotoxins, a problem that is further exacerbated by the synergistic toxicological effects of these co-occurring mycotoxins. Consequently, the development of rapid detection methods capable of simultaneously identifying multiple mycotoxins in agricultural products is essential to prevent their entry into the food chain. Compared to standard detection methods, optical and electrochemical (EC) sensing methods have distinct advantages for the rapid detection of mycotoxins. This review comprehensively summarizes the latest advancements in the field of simultaneous detection of multiple mycotoxins using optical and EC sensing methods over the last 6 years (2018–2024). First, the review introduces the classification and relevant principles of optical and EC sensing methods. Thereafter, it emphasizes innovative simultaneous detection strategies within these approaches. Finally, it discusses current challenges and offers a reference for further research. Currently, the main challenge lies in the mutual interference among targets, making the development of an interference-free detection platform essential. Furthermore, the ongoing development of integrated technology is expected to aid regulatory authorities in improving the quality of agricultural products for field applications.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 6","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous detection of multiple mycotoxins in agricultural products: Recent advances in optical and electrochemical sensing methods\",\"authors\":\"Chunyuan Tang, Yi He, Bingzheng Yuan, Libo Li, Lijun Luo, Tianyan You\",\"doi\":\"10.1111/1541-4337.70062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mycotoxin contamination poses serious threats to human and animal health. Food and environmental systems are often simultaneously contaminated with multiple mycotoxins, a problem that is further exacerbated by the synergistic toxicological effects of these co-occurring mycotoxins. Consequently, the development of rapid detection methods capable of simultaneously identifying multiple mycotoxins in agricultural products is essential to prevent their entry into the food chain. Compared to standard detection methods, optical and electrochemical (EC) sensing methods have distinct advantages for the rapid detection of mycotoxins. This review comprehensively summarizes the latest advancements in the field of simultaneous detection of multiple mycotoxins using optical and EC sensing methods over the last 6 years (2018–2024). First, the review introduces the classification and relevant principles of optical and EC sensing methods. Thereafter, it emphasizes innovative simultaneous detection strategies within these approaches. Finally, it discusses current challenges and offers a reference for further research. Currently, the main challenge lies in the mutual interference among targets, making the development of an interference-free detection platform essential. Furthermore, the ongoing development of integrated technology is expected to aid regulatory authorities in improving the quality of agricultural products for field applications.</p>\",\"PeriodicalId\":155,\"journal\":{\"name\":\"Comprehensive Reviews in Food Science and Food Safety\",\"volume\":\"23 6\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Reviews in Food Science and Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70062\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70062","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Simultaneous detection of multiple mycotoxins in agricultural products: Recent advances in optical and electrochemical sensing methods
Mycotoxin contamination poses serious threats to human and animal health. Food and environmental systems are often simultaneously contaminated with multiple mycotoxins, a problem that is further exacerbated by the synergistic toxicological effects of these co-occurring mycotoxins. Consequently, the development of rapid detection methods capable of simultaneously identifying multiple mycotoxins in agricultural products is essential to prevent their entry into the food chain. Compared to standard detection methods, optical and electrochemical (EC) sensing methods have distinct advantages for the rapid detection of mycotoxins. This review comprehensively summarizes the latest advancements in the field of simultaneous detection of multiple mycotoxins using optical and EC sensing methods over the last 6 years (2018–2024). First, the review introduces the classification and relevant principles of optical and EC sensing methods. Thereafter, it emphasizes innovative simultaneous detection strategies within these approaches. Finally, it discusses current challenges and offers a reference for further research. Currently, the main challenge lies in the mutual interference among targets, making the development of an interference-free detection platform essential. Furthermore, the ongoing development of integrated technology is expected to aid regulatory authorities in improving the quality of agricultural products for field applications.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.