Meng Xie, Dimiru Tadesse, Jin Zhang, Tao Yao, Li Zhang, Sara S Jawdy, Amith Devireddy, Kaijie Zheng, Emily B Smith, Jennifer Morrell-Falvey, Chongle Pan, Feng Chen, Gerald A Tuskan, Wellington Muchero, Jin-Gui Chen
{"title":"AtDGCR14L通过调节拟南芥的前mRNA剪接促进盐胁迫耐受性。","authors":"Meng Xie, Dimiru Tadesse, Jin Zhang, Tao Yao, Li Zhang, Sara S Jawdy, Amith Devireddy, Kaijie Zheng, Emily B Smith, Jennifer Morrell-Falvey, Chongle Pan, Feng Chen, Gerald A Tuskan, Wellington Muchero, Jin-Gui Chen","doi":"10.1111/tpj.17136","DOIUrl":null,"url":null,"abstract":"<p><p>In plants, pre-mRNA alternative splicing has been demonstrated to be a crucial tier that regulates gene expression in response to salt stress. However, the underlying mechanisms remain elusive. Here, we studied the roles of DIGEORGE-SYNDROME CRITICAL REGION 14-like (AtDGCR14L) in regulating pre-mRNA splicing and salt stress tolerance. We discovered that Arabidopsis AtDGCR14L is required for maintaining plant salt stress tolerance and the constitutively spliced and active isoforms of important stress- and/or abscisic acid (ABA)-responsive genes. We also identified the interaction between AtDGCR14L and splicing factor U1-70k, which needs a highly conserved three amino acid (TWG) motif in DGCR14. Different from wild-type AtDGCR14L, the overexpression of the TWG-substituted AtDGCR14L mutant did not change salt stress tolerance or pre-mRNA splicing of stress/ABA-responsive genes. Additionally, SWITCH3A (SWI3A) is a core subunit of the SWI/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes. We found that SWI3A, whose splicing depends on AtDGCR14L, actively enhances salt stress tolerance. These results revealed that AtDGCR14L may play an essential role in crosstalk between plant salt-stress response and pre-mRNA splicing mechanisms. We also unveiled the potential role of SWI3A in controlling salt stress tolerance. The TWG motif in the intrinsically disordered region of AtDGCR14L is highly conserved and crucial for DGCR14 functions.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AtDGCR14L contributes to salt-stress tolerance via regulating pre-mRNA splicing in Arabidopsis.\",\"authors\":\"Meng Xie, Dimiru Tadesse, Jin Zhang, Tao Yao, Li Zhang, Sara S Jawdy, Amith Devireddy, Kaijie Zheng, Emily B Smith, Jennifer Morrell-Falvey, Chongle Pan, Feng Chen, Gerald A Tuskan, Wellington Muchero, Jin-Gui Chen\",\"doi\":\"10.1111/tpj.17136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In plants, pre-mRNA alternative splicing has been demonstrated to be a crucial tier that regulates gene expression in response to salt stress. However, the underlying mechanisms remain elusive. Here, we studied the roles of DIGEORGE-SYNDROME CRITICAL REGION 14-like (AtDGCR14L) in regulating pre-mRNA splicing and salt stress tolerance. We discovered that Arabidopsis AtDGCR14L is required for maintaining plant salt stress tolerance and the constitutively spliced and active isoforms of important stress- and/or abscisic acid (ABA)-responsive genes. We also identified the interaction between AtDGCR14L and splicing factor U1-70k, which needs a highly conserved three amino acid (TWG) motif in DGCR14. Different from wild-type AtDGCR14L, the overexpression of the TWG-substituted AtDGCR14L mutant did not change salt stress tolerance or pre-mRNA splicing of stress/ABA-responsive genes. Additionally, SWITCH3A (SWI3A) is a core subunit of the SWI/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes. We found that SWI3A, whose splicing depends on AtDGCR14L, actively enhances salt stress tolerance. These results revealed that AtDGCR14L may play an essential role in crosstalk between plant salt-stress response and pre-mRNA splicing mechanisms. We also unveiled the potential role of SWI3A in controlling salt stress tolerance. The TWG motif in the intrinsically disordered region of AtDGCR14L is highly conserved and crucial for DGCR14 functions.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/tpj.17136\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17136","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
AtDGCR14L contributes to salt-stress tolerance via regulating pre-mRNA splicing in Arabidopsis.
In plants, pre-mRNA alternative splicing has been demonstrated to be a crucial tier that regulates gene expression in response to salt stress. However, the underlying mechanisms remain elusive. Here, we studied the roles of DIGEORGE-SYNDROME CRITICAL REGION 14-like (AtDGCR14L) in regulating pre-mRNA splicing and salt stress tolerance. We discovered that Arabidopsis AtDGCR14L is required for maintaining plant salt stress tolerance and the constitutively spliced and active isoforms of important stress- and/or abscisic acid (ABA)-responsive genes. We also identified the interaction between AtDGCR14L and splicing factor U1-70k, which needs a highly conserved three amino acid (TWG) motif in DGCR14. Different from wild-type AtDGCR14L, the overexpression of the TWG-substituted AtDGCR14L mutant did not change salt stress tolerance or pre-mRNA splicing of stress/ABA-responsive genes. Additionally, SWITCH3A (SWI3A) is a core subunit of the SWI/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes. We found that SWI3A, whose splicing depends on AtDGCR14L, actively enhances salt stress tolerance. These results revealed that AtDGCR14L may play an essential role in crosstalk between plant salt-stress response and pre-mRNA splicing mechanisms. We also unveiled the potential role of SWI3A in controlling salt stress tolerance. The TWG motif in the intrinsically disordered region of AtDGCR14L is highly conserved and crucial for DGCR14 functions.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.