为什么太冷?从机理上理解冷水污染对一种濒临灭绝的暖水性鱼类繁殖的影响

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Pub Date : 2024-11-11 DOI:10.1111/mec.17588
Eliza I Gilbert, Tracy A Diver, Steven M Mussmann, Melody J Saltzgiver, William K Knight, Scott L Durst, Michael A Farrington, Stephani L Clark Barkalow, Michael Tobler, Nathan R Franssen
{"title":"为什么太冷?从机理上理解冷水污染对一种濒临灭绝的暖水性鱼类繁殖的影响","authors":"Eliza I Gilbert, Tracy A Diver, Steven M Mussmann, Melody J Saltzgiver, William K Knight, Scott L Durst, Michael A Farrington, Stephani L Clark Barkalow, Michael Tobler, Nathan R Franssen","doi":"10.1111/mec.17588","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental temperature shapes the ontogeny of ectotherms by influencing rates of growth and development which can be key determinants of survival. Whereas the escalating impacts of water management on freshwater ecosystems is well documented, the effects of cold-water releases from dams-which can alter downstream temperatures-remains relatively underexplored but may present novel challenges to endemic ectotherms. Specifically, little is known about how thermal depressions reshape phenotypic and genetic patterns during larval metamorphosis for fishes that evolved in warmwater systems. We assessed the effects of thermal shifts on larval ontogeny of the endangered razorback sucker (Xyrauchen texanus), which evolved in the warm waters of the Colorado River Basin, USA. We hypothesised that development is more sensitive to cold-water influences than growth and that temperature would influence patterns in gene expression related to development. Our results supported these hypotheses and showed that both wild and laboratory-reared larvae in slightly cooler temperatures exhibited delayed development, but similar growth compared to larvae reared in warmer conditions. These findings suggest growth and development in early ectotherm life stages can be decoupled, which follows patterns more like the temperature-size rule than allometric scaling of development by size. We also observed transcriptional differences related to genes associated with stress responses and development in our laboratory-reared fish; here, gene expression of fish from the coldest conditions at the end of the experiment was more similar to fish reared in warmer temperatures at the midpoint. Our findings suggest that modest temperature reductions can delay ontogeny and alter the transcriptional landscape while not necessarily limiting growth. This finding highlights the need for conservation practitioners to consider cascading impacts that even small temperature reductions can cause in riverine ecosystems.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17588"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why Is It Too Cold? Towards a Mechanistic Understanding of Cold-Water Pollution Effects on Recruitment of an Imperiled Warmwater Fish.\",\"authors\":\"Eliza I Gilbert, Tracy A Diver, Steven M Mussmann, Melody J Saltzgiver, William K Knight, Scott L Durst, Michael A Farrington, Stephani L Clark Barkalow, Michael Tobler, Nathan R Franssen\",\"doi\":\"10.1111/mec.17588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Environmental temperature shapes the ontogeny of ectotherms by influencing rates of growth and development which can be key determinants of survival. Whereas the escalating impacts of water management on freshwater ecosystems is well documented, the effects of cold-water releases from dams-which can alter downstream temperatures-remains relatively underexplored but may present novel challenges to endemic ectotherms. Specifically, little is known about how thermal depressions reshape phenotypic and genetic patterns during larval metamorphosis for fishes that evolved in warmwater systems. We assessed the effects of thermal shifts on larval ontogeny of the endangered razorback sucker (Xyrauchen texanus), which evolved in the warm waters of the Colorado River Basin, USA. We hypothesised that development is more sensitive to cold-water influences than growth and that temperature would influence patterns in gene expression related to development. Our results supported these hypotheses and showed that both wild and laboratory-reared larvae in slightly cooler temperatures exhibited delayed development, but similar growth compared to larvae reared in warmer conditions. These findings suggest growth and development in early ectotherm life stages can be decoupled, which follows patterns more like the temperature-size rule than allometric scaling of development by size. We also observed transcriptional differences related to genes associated with stress responses and development in our laboratory-reared fish; here, gene expression of fish from the coldest conditions at the end of the experiment was more similar to fish reared in warmer temperatures at the midpoint. Our findings suggest that modest temperature reductions can delay ontogeny and alter the transcriptional landscape while not necessarily limiting growth. This finding highlights the need for conservation practitioners to consider cascading impacts that even small temperature reductions can cause in riverine ecosystems.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17588\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17588\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17588","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环境温度会影响外温动物的生长发育速度,从而决定其存活率。水管理对淡水生态系统的影响不断升级,这一点已被充分记录,但大坝释放冷水的影响(可改变下游温度)仍相对缺乏探索,但可能会给特有的外温动物带来新的挑战。具体来说,对于在温水系统中进化的鱼类来说,热低压是如何重塑其幼虫变态期间的表型和遗传模式的,我们知之甚少。我们评估了在美国科罗拉多河流域温暖水域进化的濒危鸦背吮吸鱼(Xyrauchen texanus)幼体发育过程中热量变化的影响。我们假设发育比生长对冷水的影响更敏感,温度会影响与发育相关的基因表达模式。我们的研究结果支持了这些假设,并表明野生幼体和实验室饲养的幼体在稍低的温度下都表现出发育延迟,但与在较高温度条件下饲养的幼体相比,生长情况相似。这些发现表明,外温动物早期生命阶段的生长和发育可以脱钩,其模式更类似于温度-体型规则,而不是体型对发育的等比例调节。我们还在实验室饲养的鱼类中观察到了与应激反应和发育相关基因的转录差异;在这里,实验结束时最冷条件下的鱼类的基因表达与实验中期温度较高条件下饲养的鱼类更为相似。我们的研究结果表明,适度降低温度可以延迟鱼类的本体发育并改变转录景观,同时不一定会限制鱼类的生长。这一发现突出表明,保护工作者需要考虑即使是较小的温度降低也会对河流生态系统造成的连带影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Why Is It Too Cold? Towards a Mechanistic Understanding of Cold-Water Pollution Effects on Recruitment of an Imperiled Warmwater Fish.

Environmental temperature shapes the ontogeny of ectotherms by influencing rates of growth and development which can be key determinants of survival. Whereas the escalating impacts of water management on freshwater ecosystems is well documented, the effects of cold-water releases from dams-which can alter downstream temperatures-remains relatively underexplored but may present novel challenges to endemic ectotherms. Specifically, little is known about how thermal depressions reshape phenotypic and genetic patterns during larval metamorphosis for fishes that evolved in warmwater systems. We assessed the effects of thermal shifts on larval ontogeny of the endangered razorback sucker (Xyrauchen texanus), which evolved in the warm waters of the Colorado River Basin, USA. We hypothesised that development is more sensitive to cold-water influences than growth and that temperature would influence patterns in gene expression related to development. Our results supported these hypotheses and showed that both wild and laboratory-reared larvae in slightly cooler temperatures exhibited delayed development, but similar growth compared to larvae reared in warmer conditions. These findings suggest growth and development in early ectotherm life stages can be decoupled, which follows patterns more like the temperature-size rule than allometric scaling of development by size. We also observed transcriptional differences related to genes associated with stress responses and development in our laboratory-reared fish; here, gene expression of fish from the coldest conditions at the end of the experiment was more similar to fish reared in warmer temperatures at the midpoint. Our findings suggest that modest temperature reductions can delay ontogeny and alter the transcriptional landscape while not necessarily limiting growth. This finding highlights the need for conservation practitioners to consider cascading impacts that even small temperature reductions can cause in riverine ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
期刊最新文献
The Genomic Signature and Transcriptional Response of Metal Tolerance in Brown Trout Inhabiting Metal-Polluted Rivers. Can Transcriptomics Elucidate the Role of Regulation in Invasion Success? Genomic Architecture Underlying the Striking Colour Variation in the Presence of Gene Flow for the Guinan Toad-Headed Lizard. A Natural Hybrid Zone of Swordtails Reveals Molecular Insights Into the Adaptive Genomic Basis of Thermal Tolerance. Infection by the Lungworm Rhabdias pseudosphaerocephala Affects the Expression of Immune-Related microRNAs by Its Co-Evolved Host, the Cane Toad Rhinella marina.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1