Boyan Duan , Yanyan Wu , Shanyu Xie , Tao Hong , Yuanfan Yang , Mingjing Zheng , Zedong Jiang , Yanbing Zhu , Qingbiao Li , Hui Ni , Yuanpeng Wang , Xiping Du , Zhipeng Li
{"title":"Gracilaria 琼脂废水厌氧发酵后对植物病原真菌的抗真菌机制和应用。","authors":"Boyan Duan , Yanyan Wu , Shanyu Xie , Tao Hong , Yuanfan Yang , Mingjing Zheng , Zedong Jiang , Yanbing Zhu , Qingbiao Li , Hui Ni , Yuanpeng Wang , Xiping Du , Zhipeng Li","doi":"10.1016/j.biortech.2024.131818","DOIUrl":null,"url":null,"abstract":"<div><div>Agar production is accompanied by a large amount of wastewater, which threatens the ecological environment and wastes biomass resources. The high-value utilization of biomass resources in wastewater is one of the key factors in wastewater treatment. We investigated the conversion process and antifungal mechanism of large molecule polysaccharides in wastewater into small molecule substances with antifungal activity through anaerobic fermentation. The results indicated that anaerobic fermentation of GAW achieved inhibition rates of 91.06 % and 88.94 % against <em>Alternaria alternata</em> and <em>Alternaria</em> spp. 16S rDNA sequencing and metabolomics revealed that dominant species such as <em>Blautia</em>, <em>Agathobacter</em> and <em>Sphingomonas</em> converted polysaccharide into phenolic acids like procyanidin C and columbidin. These substances disrupted the integrity of fungal cells, leading to their death. The preparation of composite antifungal agents using fermentation products effectively inhibited cherry tomato spoilage and toxin production. This study provided reliable technical support for the reuse of seaweed waste resources.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131818"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antifungal mechanism and application to phytopathogenic fungi after anaerobic fermentation of Gracilaria agar wastewater\",\"authors\":\"Boyan Duan , Yanyan Wu , Shanyu Xie , Tao Hong , Yuanfan Yang , Mingjing Zheng , Zedong Jiang , Yanbing Zhu , Qingbiao Li , Hui Ni , Yuanpeng Wang , Xiping Du , Zhipeng Li\",\"doi\":\"10.1016/j.biortech.2024.131818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Agar production is accompanied by a large amount of wastewater, which threatens the ecological environment and wastes biomass resources. The high-value utilization of biomass resources in wastewater is one of the key factors in wastewater treatment. We investigated the conversion process and antifungal mechanism of large molecule polysaccharides in wastewater into small molecule substances with antifungal activity through anaerobic fermentation. The results indicated that anaerobic fermentation of GAW achieved inhibition rates of 91.06 % and 88.94 % against <em>Alternaria alternata</em> and <em>Alternaria</em> spp. 16S rDNA sequencing and metabolomics revealed that dominant species such as <em>Blautia</em>, <em>Agathobacter</em> and <em>Sphingomonas</em> converted polysaccharide into phenolic acids like procyanidin C and columbidin. These substances disrupted the integrity of fungal cells, leading to their death. The preparation of composite antifungal agents using fermentation products effectively inhibited cherry tomato spoilage and toxin production. This study provided reliable technical support for the reuse of seaweed waste resources.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"416 \",\"pages\":\"Article 131818\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852424015220\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424015220","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Antifungal mechanism and application to phytopathogenic fungi after anaerobic fermentation of Gracilaria agar wastewater
Agar production is accompanied by a large amount of wastewater, which threatens the ecological environment and wastes biomass resources. The high-value utilization of biomass resources in wastewater is one of the key factors in wastewater treatment. We investigated the conversion process and antifungal mechanism of large molecule polysaccharides in wastewater into small molecule substances with antifungal activity through anaerobic fermentation. The results indicated that anaerobic fermentation of GAW achieved inhibition rates of 91.06 % and 88.94 % against Alternaria alternata and Alternaria spp. 16S rDNA sequencing and metabolomics revealed that dominant species such as Blautia, Agathobacter and Sphingomonas converted polysaccharide into phenolic acids like procyanidin C and columbidin. These substances disrupted the integrity of fungal cells, leading to their death. The preparation of composite antifungal agents using fermentation products effectively inhibited cherry tomato spoilage and toxin production. This study provided reliable technical support for the reuse of seaweed waste resources.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.