{"title":"底物浓度对渗透微生物燃料电池处理磺胺甲噁唑废水的影响:洞察运行效率、膜污垢动态变化和微生物反应。","authors":"Hengliang Zhang, Fei Xing, Liang Duan, Qiusheng Gao, Shilong Li, Yang Zhao","doi":"10.1016/j.biortech.2024.131805","DOIUrl":null,"url":null,"abstract":"<p><p>To solve the problems of antibiotic pollution, water resources and energy shortage, an osmotic microbial fuel cell (OsMFC) was adopted innovatively to treat antibiotic wastewater containing sulfamethoxazole (SMX), and achieved SMX removal, water production and electricity generation. Substrate concentration was a key factor affecting the performances of OsMFC, which was often ignored by researchers. This study explored the effect of substrate concentration on system performances, clarified the dynamic changes of membrane fouling under different substrate concentrations, and further revealed the response of microbial communities. The results showed that the stable removal efficiency of SMX exceeded 98.8 % due to the efficient interception of forward osmosis (FO) membrane. Compared with the 1.0 g/L NaAc system, the SMX degradation efficiency and maximum output voltage in the 2.0 g/L NaAc system were only increased by 3.9 % and 6.3 %, respectively. However, the initial water flux decreased by 30.1 % in the 7th cycle due to more serious FO membrane fouling. In addition, there were significant differences in the dynamic formation process of FO membrane fouling. Higher substrate concentration increased the relative abundance of Desulfobacterota and Geobacter. Functional prediction analysis showed that increasing substrate concentration promoted carbohydrate metabolism pathways and relative abundance of sulfur respiration functional groups, thereby improving COD and SMX removal rates. However, the biosynthesis of other secondary metabolites was significantly improved, resulting in increased contents of EPS and SMP, which aggravated membrane pollution. Overall, the system performed better when the substrate concentration was 1.0 g/L. This study would provide certain guidance for the performance optimization and membrane fouling mitigation of OsMFC, thereby promoting its practical application in antibiotic wastewater treatment.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131805"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of substrate concentration on sulfamethoxazole wastewater treatment by osmotic microbial fuel cell: Insight into operational efficiency, dynamic changes of membrane fouling and microbial response.\",\"authors\":\"Hengliang Zhang, Fei Xing, Liang Duan, Qiusheng Gao, Shilong Li, Yang Zhao\",\"doi\":\"10.1016/j.biortech.2024.131805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To solve the problems of antibiotic pollution, water resources and energy shortage, an osmotic microbial fuel cell (OsMFC) was adopted innovatively to treat antibiotic wastewater containing sulfamethoxazole (SMX), and achieved SMX removal, water production and electricity generation. Substrate concentration was a key factor affecting the performances of OsMFC, which was often ignored by researchers. This study explored the effect of substrate concentration on system performances, clarified the dynamic changes of membrane fouling under different substrate concentrations, and further revealed the response of microbial communities. The results showed that the stable removal efficiency of SMX exceeded 98.8 % due to the efficient interception of forward osmosis (FO) membrane. Compared with the 1.0 g/L NaAc system, the SMX degradation efficiency and maximum output voltage in the 2.0 g/L NaAc system were only increased by 3.9 % and 6.3 %, respectively. However, the initial water flux decreased by 30.1 % in the 7th cycle due to more serious FO membrane fouling. In addition, there were significant differences in the dynamic formation process of FO membrane fouling. Higher substrate concentration increased the relative abundance of Desulfobacterota and Geobacter. Functional prediction analysis showed that increasing substrate concentration promoted carbohydrate metabolism pathways and relative abundance of sulfur respiration functional groups, thereby improving COD and SMX removal rates. However, the biosynthesis of other secondary metabolites was significantly improved, resulting in increased contents of EPS and SMP, which aggravated membrane pollution. Overall, the system performed better when the substrate concentration was 1.0 g/L. This study would provide certain guidance for the performance optimization and membrane fouling mitigation of OsMFC, thereby promoting its practical application in antibiotic wastewater treatment.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"131805\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2024.131805\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131805","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Effect of substrate concentration on sulfamethoxazole wastewater treatment by osmotic microbial fuel cell: Insight into operational efficiency, dynamic changes of membrane fouling and microbial response.
To solve the problems of antibiotic pollution, water resources and energy shortage, an osmotic microbial fuel cell (OsMFC) was adopted innovatively to treat antibiotic wastewater containing sulfamethoxazole (SMX), and achieved SMX removal, water production and electricity generation. Substrate concentration was a key factor affecting the performances of OsMFC, which was often ignored by researchers. This study explored the effect of substrate concentration on system performances, clarified the dynamic changes of membrane fouling under different substrate concentrations, and further revealed the response of microbial communities. The results showed that the stable removal efficiency of SMX exceeded 98.8 % due to the efficient interception of forward osmosis (FO) membrane. Compared with the 1.0 g/L NaAc system, the SMX degradation efficiency and maximum output voltage in the 2.0 g/L NaAc system were only increased by 3.9 % and 6.3 %, respectively. However, the initial water flux decreased by 30.1 % in the 7th cycle due to more serious FO membrane fouling. In addition, there were significant differences in the dynamic formation process of FO membrane fouling. Higher substrate concentration increased the relative abundance of Desulfobacterota and Geobacter. Functional prediction analysis showed that increasing substrate concentration promoted carbohydrate metabolism pathways and relative abundance of sulfur respiration functional groups, thereby improving COD and SMX removal rates. However, the biosynthesis of other secondary metabolites was significantly improved, resulting in increased contents of EPS and SMP, which aggravated membrane pollution. Overall, the system performed better when the substrate concentration was 1.0 g/L. This study would provide certain guidance for the performance optimization and membrane fouling mitigation of OsMFC, thereby promoting its practical application in antibiotic wastewater treatment.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.