欧罗巴上下降融化探测器的旅行时间。

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2024-11-01 Epub Date: 2024-10-10 DOI:10.1089/ast.2024.0026
Augusto Carballido
{"title":"欧罗巴上下降融化探测器的旅行时间。","authors":"Augusto Carballido","doi":"10.1089/ast.2024.0026","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we calculated the travel times of a thermal probe that descends through Europa's ice shell. The ice column is simplified to a conductive layer. Using a cellular automaton model, the descent of the probe was simulated by tracking temperature changes, with cell interaction dictated by heat conduction and cell state transition rules determined by cell temperatures. Validation tests, including a soil column simulation, and comparison with experimental data, support the reliability of the model. Simulations were performed with 2 different cell sizes, 19 constant probe temperatures, and 5 ice thermal conductivities. A smaller cell size (<math><mrow><mtext>Δ</mtext><mi>z</mi><mo>=</mo><mn>3</mn><mo> </mo></mrow></math>mm) produced shorter travel times (between 22 days for a probe temperature <math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo><mn>600</mn><mi>K</mi></mrow></math> and ∼4 years for <math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo><mn>280</mn><mi>K</mi></mrow></math>) than a larger cell size (<math><mrow><mtext>Δ</mtext><mi>z</mi><mo>=</mo><mn>1</mn><mo> </mo></mrow></math>m), which produced travel times between 27 years (<math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo></mrow></math> 600K) and ∼10<sup>3</sup> years (<math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo></mrow></math> 280K). The ice shell's thermal conductivity has a modest impact on descent times. The results are generally consistent with previous approaches that used more detailed probe engineering considerations. These results suggest that a probe relying solely on heat production may traverse Europa's conductive ice shell within a mission's timeframe.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 11","pages":"1143-1149"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Travel Times of a Descending Melting Probe on Europa.\",\"authors\":\"Augusto Carballido\",\"doi\":\"10.1089/ast.2024.0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we calculated the travel times of a thermal probe that descends through Europa's ice shell. The ice column is simplified to a conductive layer. Using a cellular automaton model, the descent of the probe was simulated by tracking temperature changes, with cell interaction dictated by heat conduction and cell state transition rules determined by cell temperatures. Validation tests, including a soil column simulation, and comparison with experimental data, support the reliability of the model. Simulations were performed with 2 different cell sizes, 19 constant probe temperatures, and 5 ice thermal conductivities. A smaller cell size (<math><mrow><mtext>Δ</mtext><mi>z</mi><mo>=</mo><mn>3</mn><mo> </mo></mrow></math>mm) produced shorter travel times (between 22 days for a probe temperature <math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo><mn>600</mn><mi>K</mi></mrow></math> and ∼4 years for <math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo><mn>280</mn><mi>K</mi></mrow></math>) than a larger cell size (<math><mrow><mtext>Δ</mtext><mi>z</mi><mo>=</mo><mn>1</mn><mo> </mo></mrow></math>m), which produced travel times between 27 years (<math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo></mrow></math> 600K) and ∼10<sup>3</sup> years (<math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo></mrow></math> 280K). The ice shell's thermal conductivity has a modest impact on descent times. The results are generally consistent with previous approaches that used more detailed probe engineering considerations. These results suggest that a probe relying solely on heat production may traverse Europa's conductive ice shell within a mission's timeframe.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\"24 11\",\"pages\":\"1143-1149\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2024.0026\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0026","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们计算了一个热探测器穿过欧罗巴冰壳下降的旅行时间。冰柱被简化为一个导电层。利用细胞自动机模型,通过跟踪温度变化来模拟探针的下降过程,细胞间的相互作用由热传导决定,细胞状态转换规则由细胞温度决定。包括土壤柱模拟在内的验证测试以及与实验数据的比较都证明了该模型的可靠性。模拟采用了 2 种不同的电池尺寸、19 种恒定探针温度和 5 种冰热传导率。较小的单元尺寸(Δz=3 毫米)比较大的单元尺寸(Δz=1 米)产生的旅行时间短(探针温度 Tp=600K 时为 22 天,Tp=280K 时为 4 年),后者产生的旅行时间为 27 年(Tp=600K)至 103 年(Tp=280K)。冰壳的导热性对下降时间的影响不大。这些结果与以前使用更详细的探测器工程考虑的方法基本一致。这些结果表明,仅依靠产热的探测器可以在飞行任务的时间范围内穿越欧罗巴的导热冰壳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Travel Times of a Descending Melting Probe on Europa.

In this study, we calculated the travel times of a thermal probe that descends through Europa's ice shell. The ice column is simplified to a conductive layer. Using a cellular automaton model, the descent of the probe was simulated by tracking temperature changes, with cell interaction dictated by heat conduction and cell state transition rules determined by cell temperatures. Validation tests, including a soil column simulation, and comparison with experimental data, support the reliability of the model. Simulations were performed with 2 different cell sizes, 19 constant probe temperatures, and 5 ice thermal conductivities. A smaller cell size (Δz=3mm) produced shorter travel times (between 22 days for a probe temperature Tp=600K and ∼4 years for Tp=280K) than a larger cell size (Δz=1m), which produced travel times between 27 years (Tp= 600K) and ∼103 years (Tp= 280K). The ice shell's thermal conductivity has a modest impact on descent times. The results are generally consistent with previous approaches that used more detailed probe engineering considerations. These results suggest that a probe relying solely on heat production may traverse Europa's conductive ice shell within a mission's timeframe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Prebiotic Nucleoside Phosphorylation in a Simulated Deep-Sea Supercritical Carbon Dioxide-Water Two-Phase Environment. Radiation-Driven Destruction of Thiophene and Methyl-Substituted Thiophenes. Rapid Destruction of Lipid Biomarkers Under Simulated Cosmic Radiation. Self-Shielding Enhanced Organics Synthesis in an Early Reduced Earth's Atmosphere. A Machine-Learning Approach to Biosignature Exploration on Early Earth and Mars Using Sulfur Isotope and Trace Element Data in Pyrite.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1